Page 73 - CatalogNEP-PS
P. 73

  Understand  the  concepts  of  finite  differences,  derive  the  interpolation  formulae,  and
                       understand its applications.

               THEORY (45 Hours)


               UNIT I                                                                             (12 Hours)
               Errors:  Relative  Error,  Absolute  Error,  Round  off  Error,  Truncation  Error.  Transcendental  and
               Polynomial  equations: Bisection method, Newton-Raphson  method, Secant method. Method of
               False Position, Fixed point iterative method, Order, and rate of convergence of these methods.
               UNIT II                                                                              (9 Hours)
               System of linear equations: Gauss Elimination and Gauss Jordan methods. Gauss Jacobi
               method, Gauss Seidel method and their convergence analysis.

               UNIT III                                                                             (9Hours)

               Interpolation: Lagrange Interpolating Polynomial, Newton‘s Gregory forward and backward
               difference interpolating polynomial, Newton‘s Divided Difference Interpolating Polynomial,
               Error analysis in each method.

               UNIT IV                                                                            (15 Hours)
               Numerical Integration: Trapezoidal rule, Simpson‘s rule, Simpson‘s 1/3rule, Simpsons 3/8th rule.
               Ordinary Differential Equations: Euler‘s method, Modified Euler‘s method, Runge-Kutta method.

               *TUTORIAL (15 Hours (1 Hour per week))


               SUGGUESTED READINGS:

                   1.  Sastry, S. S. (2012). Introductory methods of numerical analysis. PHI Learning Pvt. Ltd..
                   2.  Gerald, C. F., & Wheatley, P. O. (2008). Applied Numerical Analysis (7th ed.). Pearson
                       Education. India.
                   3.  Bradie, Brian. (2006). A Friendly Introduction to Numerical Analysis. Pearson
                   17. Education, India. Dorling Kindersley (India) Pvt. Ltd. Third impression 2011.
                   4.  Mudge, M. R. (2003). An introduction to numerical methods and analysis,(Wiley).
                   5.  Jain, M. K., Iyengar, S. R. K., & Jain, R. K. (2012). Numerical Methods for Scientific
                   18. and Engineering Computation. (6th ed.). New Age International Publisher, India, 2016.
                   6.  Spectrum- Numerical Methods, Sharma Publications, Jalandhar



               DISCIPLINE ELECTIVE COURSES:




               Math.212                   Elements of Number Theory                                     3+1*

               LEARNING OBJECTIVES:

               The primary objective of this course is to introduce:
                     The Euclidean algorithm and linear Diophantine equations, the Fundamental theorem of
                   19. arithmetic and some of the open problems of number theory viz. the Goldbach conjecture.
                     The modular arithmetic, linear congruence equations, system of linear congruence
                   20. equations, arithmetic functions, and multiplicative functions, e.g., Euler‘s Phi-function.
                     Introduction of the simple encryption and decryption techniques, and the numbers of
                   21. specific forms viz. Mersenne numbers, Fermat numbers etc.


                                                                                                            58
   68   69   70   71   72   73   74   75   76   77   78