ANNUAL PROGRESS REPORT (2021-2022)

Department of Organic Agriculture & Natural Farming

College of Agriculture CSK Himachal Pradesh KrishiVishvavidyalaya Palampur-176062 (H.P.)

Patron

Dr. Janardan Singh Head

Compiled and edited by

- 1. Dr. Janardan Singh
- 2. Dr. Rameshwar Kumar
- 3. Dr. Gopal Katna
- 4. Dr. Rakesh Kumar
- 5. Mr. Raj Kumar

Year

2022

Published by

Department of Organic Agriculture & Natural Farming College of Agriculture CSK Himachal Pradesh KrishiVishvavidyalaya Palampur-176062 (H.P.)

ACKNOWLEDGEMENT

The Annual Progress Report of the Department of Organic Agriculture and Natural Farming, College of Agriculture is based on the information furnished by the scientists working in the department. The work done during 2021-22 in the fields of teaching, research and extension has been compiled in this report.

The department receives its financial assistance through plan and non-plan schemes of the Government of Himachal Pradesh and adhoc research & development projects funded by the State Government, JICA, DBT, ICAR, New Delhi and other funding agencies. I am highly thankful to all these Institutions/Agencies for providing the financial assistance to this department.

The guidance, support and continuous encouragement provided by the Hon'ble Vice-Chancellor, Dr. H.K. Chaudhary, Dean, College of Agriculture, Dr. D. K. Vatsa and Director of Research, Dr. S.P. Dixit are gratefully acknowledged. Sincere thanks are also due to the Director, Extension Education, Dean, Post-Graduate Studies and respective heads of the Departments for rendering valuable guidance and keen interest in teaching, research and extension of the department.

The help and cooperation extended by the scientists, project, office and field staff of the department in accomplishing various activities with full devotion are thankfully acknowledged. I am very thankful to all the scientists and Mr. Raj Kumar for compiling and editing the report for the year of 2021-2022.

> (Janardan Singh) Head

CONTENTS

Sr. No.	Particulars	Page No.
	Acknowledgment	
1.	Introduction	1
2.	Faculty and Staff position	3
3.	Research Projects/Schemes	5
4.	Teaching	7
5.	Research	10
5.1	Significant research achievements	10
5.2	Experimental results	12
5.2.1	Crop demonstrations	12
5.2.2	Development of package of practices of SPNF	18
5.2.3	Varietal evaluation	25
5.2.4	Microbial evaluation in cow dung and urine	29
5.2.5	Soil and microbiological studies	36
5.3	Students' lab research work	47
6.	Extension	49
7.	Publications	51
8.	Participation in workshops/seminars/conferences/trainings	55
9.	Honors, awards and recognitions	57
10.	Departmental facelift	59
11.	Miscellaneous activities	60
12.	Photo Gallery	65

INTRODUCTION

Recent growing consensus about the ill effects of synthetic chemicals emphasized a need for change in agricultural production technologies through developing 'Organic Farming' which is a sustainable, eco-friendly and environmentally sound alternative agricultural approach. The activities to promote organic farming in this University were initiated during 2006, when the Model Organic Farm was established in an area of about 13 hectares for development of organic crop production technology along with Human Resource Development on various aspects of organic farming. To keep on the pace, in August 2009, a separate Department of Organic Agriculture was established to carry out exclusive research and different extension activities on organic farming for different stake holders of the state. Thereafter, with the inception of natural farming programme in state, this department also initiated efforts to carry out research on natural farming in addition to organic farming. As a result of which in January 2018, this department was renamed as 'Organic Agriculture & Natural Farming' a first of its own kind in the country. This department has three different research farms viz. i. Model Organic Farm (13 hectares) having dairy unit for carrying out exclusive research on organic farming; ii. ZBNF/Natural Farm (10 hectares) having dairy unit for carrying out research on various aspects of natural farming; iii.) Holta Farm (3 hectares) for carrying out comparative studies on natural, organic and inorganic farming.

For the wider adoption of natural farming in the state, a Zero Budget Natural Farming (ZBNF) centre was also established to demonstrate the cultivation of potential crops (cereals, pulses, oilseeds, vegetables, etc.) under natural farming system. This ZBNF Centre is acting as a focal point for the farmers of the state ultimately leading to successful transfer of technology to the farmers' fields and popularizing it for wider adoption. Presently, the technologies developed under natural farming system are being evaluated through multi locational studies. For wider adoption of this system, the University and different KVKs will disseminate the refined technologies for successful transfer to the farmers' fields. In addition to this, studies on the multiplication and popularization of different potential crops (Amaranth, Buckwheat and Chenopod) are also being under taken by this department, not only at the HQ but also at different multi-locational potential areas of the state under the Japan International Corporation Agency (JICA) funded project. However, under the ICAR sponsored NAHEP-CAAST project on 'Protected Agriculture & Natural Farming' evaluation of varieties of different vegetables and field crops under natural farming conditions are also being carried out. In order to standardize the different inputs being used in natural farming system studies on field evaluation and microbiological analysis are also being under taken through a DBT sponsored *adhoc* research project.

The department is also engaged in carrying out research & extension on various aspects of organic/natural farming by preparing different types of organic and natural farming bioformulations/inputs for enhancing productivity and value addition. Efficacy of these bioformulations/inputs are being tested through research experiments and also being provided to different departments of the university and various agencies of the state, as per their requirement. The Scientists of the department are also extending the consultancy services in the field of organic and natural farming to different field functionaries, farmers and stakeholders of the state as and when required.

Mandate

Creation and dissemination of knowledge on organic agriculture & natural farming based on farm resource management

Thrust areas

- > Evaluation and development of organic and natural farming input responsive varieties
- Scientific validation of different traditional organic/natural farming practices
- Standardization of suitable combinations of organic and natural farming inputs for nutrient and pest management
- Refinement of various agro-techniques
- Soil health and quality evaluation studies
- Integrated farming system development
- > Human resource development through quality education and training

The department is doing its best to meet out the expectations of the university as well as the state government by developing, refining and disseminating the need based technologies on organic & natural farming. The faculty and non-teaching strength of this department is quite meagre because there is only one state scheme *viz*. APL-043-56 (II) and one ICAR sponsored AICRN on potential crops (ICAR-033-56) whereas, the other faculty are from different departments.

Designation/Scale	Post	Filled	Vacant	Incumbent	Remarks
Head (37400-67000+GP)	-	1	-	Dr. Janardan Singh	Salary is being drawn from
Principal Scientist (Agronomy) (37400-67000+GP)	-	1	_	Dr. Rameshwar Kumar	different departments
Sr. Scientist (Plant Breeder) (37400-67000+GP)	1	1	-	Dr. Gopal Katna	ICAR-AICRN- 033-56
Asst. Professor (Zoology) (18400-57000+GP)	-	1	-	Dr. Rakesh Kumar	Salary is being drawn from COBS

2.2 Staff Position

2.2.1 Office and Fiel	d staff				
Designation/Scale	Posts	Filled	Vacant	Incumbent	Remarks
Superintendent (63100 BP)	-	1	-	Smt. Nisha Bhardwaj	Salary being drawn from DEE
Sr. Scale Steno* (10300-34800+GP)	1	-	1	Sh. Raju Chauhan	Posted at V.C office, APL-043-56 (II)
Sr. Assistant (10300-34800+GP)	1	-	1	-	APL-043-56 (II)
Tech Assistant Gr-II (5910-20200+GP)	-	1	-	Sh. Bikram Singh	Salary being drawn from Seed Science & Technology
Field Assistant Gr-I (5910-20200+GP)	1	-	1		ICAR-AICRN- 033-56

2.2.2 Research staff under ad hoc projects

Sr. No.	Name of the Project	Research staff	Incumbent
1.	NAHEP-CAAST on 'Protected Agriculture & Natural Farming'	Research Associate	Dr. Aditi Badiyala
2.	DUS testing of Buckwheat at CSKHPKV- RSS Sangla	Yong Professional-II	Mr. Manoj Kumar
3.	Popularization of Potential crops (Amaranth, Buckwheat and Chenopod)	Jr. Research Fellow	Mr. Raj Kumar
	of North Western Himalayas as vegetable and seed under Organic and Natural Farming conditions through participatory plant breeding	Lab Assistant	Mr. Raman Kumar
4.	Establishment of Gurukul (Kurukshetra)	Project Assistant	Mr. Kulbhushan
	Model of Zero Budget Natural Farming	Project Assistant	Smt. Anita Rana
	Centre at CSKHPKV, Palampur	Field Helper	Sh. Santosh Kumar
5.	Evaluation, refinement and	Project Assistant	Ms.Sangeeta Kanwar
	dissemination of technologies of	Project Assistant	Sh. Santosh Kumar
	Subhash Palekar Natural Farming (SPNF) in HP	Field Assistant	Mr. Prashant
		Field Assistant	Mr. Vivek Gaurav
6.	Efficacy of indigenous cow based bio- formulations as soil inoculants and pesticides in agriculture	Jr. Research Fellow	Ms. Jyoti Bala

3. RESEARCH PROJECTS/SCHEMES

Presently, five ad hoc research projects funded by the ICAR, PPV & FRA and State Government of Himachal Pradesh, and two revolving fund schemes are in operation in the department.

3.1 On-going Research Projects

3.1.1 All India Coordinated Research Project (AICRPs)

Sr. No.	Name of project	Funding agency	Budget (Rs. in lakh)	Duration
1.	All India Coordinated Research Network	ICAR	>30 lakhs	1996, long
	Program on 'Potential Crops'	New Delhi		term

3.1.2 Ad hoc Research Projects

Sr. No.	Title of the Project	Funding agency	Budget (Rs. in lakh)	Duration			
1.	NAHEP-CAASTon'ProtectedAgriculture & Natural Farming'	ICAR, New Delhi	20.00	Sept. 2019 to March 2023			
2.	Establishment of Gurukul (Kurukshetra) Model of Zero Budget Natural Farming Centre at CSKHPKV, Palampur	H.P. Govt. Shimla	300.00	April 2018 to March 2023			
3.	Evaluation, refinement and dissemination of technologies of Subhash Palekar Natural Farming (SPNF) in HP	-do-	185.15	April 2019 to March 2024			
4.	Popularization of potential crops (Amaranth, Buckwheat and Chenopod) of North Western Himalayas as vegetable and seed under organic and natural farming conditions through participatory plant breeding	-do-	30.00	June 2021 to March 2024			
5.	DUS testing of Buckwheat at CSKHPKV, RSS Sangla	PPV&FRA New Delhi	6.45	September 2021 onwards			
6.	Efficacy of indigenous cow based bio- formulations as soil inoculants and pesticides in agriculture	DBT New Delhi	40.50	April 2022 to March 2025			
7.	Capacity Building of Tribal Farmers of Himachal Pradesh through technological interventions in protected cultivation and organic farming - sub project 'Economic upliftment of tribal farmers of HP through refinement and popularization of organic farming practices'	ICAR-TSP	19.00 (Advance drawn)	April 2019 to April 2023			

3.2 Ad hoc Research Projects submitted

- i. Research project entitled "Evaluation, refinement and dissemination of technologies of Natural Farming in HP-II" worth Rs. 304.08 lakhs was submitted and presented to Prakritik Kheti Khushhal Kissan Yojna (PK3Y), Govt. of Himachal Pradesh.
- ii. Research project entitled "Enhancing livelihood security, youth empowerment and building entrepreneurship through production of organic & natural farming inputs" worth Rs. 53.80 lakh was prepared and submitted to the RKVY-RAFTAAR, Govt. of Himachal Pradesh.

Sr. No.	Name of the scheme (code)	Year of start	Seed money (Rs.)	Balance as on 31.7.2022 (Rs.)
1.	Revolving fund (RF-B-47-126-56)	2009	-	2,84,798 (2021-22)
2.	ELP (B-67-148-56)	2018	6,270	1,32,738

3.3 Revolving fund scheme

4. TEACHING

The faculty of the department is involved in teaching of various courses on organic farming and other related fields to UG, PG & Ph. D students of the University. In addition, they are also engaged in guiding the students of undergraduate, post graduate and doctoral programmes of their respective departments.

4.1 Courses taught

Sr.	Course	Course Title	Cr. Hrs	Name of Teacher
No.	No.			
1.	ELP	Experiential Learning Programme	0+10	Dr. Janardan Singh
		(ELP) on Organic Agriculture Module		Dr. Rameshwar Kumar
		(First Semester)		Dr. Gopal Katna
				Dr. Rakesh
2.	ELP	Experiential Learning Programme on	0+10	Dr. Janardan Singh
		Organic Agriculture Module		Dr. Rameshwar Kumar
		(Second Semester)		Dr. Gopal Katna
				Dr Rakesh
3.	Agron	Rainfed Agriculture &Watershed	1+1	Dr. Janardan Singh
	3610	Management		
4.	Agron	Principles of Organic Agriculture	1+1	Dr. Rameshwar Kumar
	3611			
5.	GP 367	Crop Improvement-II (Rabi crops)	1+1	Dr. Gopal Katna
				Dr. Uttam Chand
6.	GP 356	Intellectual Property Rights	1+0	Dr Gopal Katna
7.	GP 244	Commercial Plant Breeding	1+2	Dr. Gopal Katna
				Dr Uttam Chand
8.	Zoo.311	Applied Zoology	4+2	Dr. Rakesh Kumar
9.	Zoo.351	Elementary Human Physiology	2+1	Dr. Rakesh Kumar
10.	Zoo.312	Aquatic Biology	4+2	Dr. Rakesh Kumar
				Dr. Radhika Sharma
11.	Bio.111	Introductory Biology (Two Sections)	1+1	Dr. Rakesh Kumar
12.	Zoo.221	Genetics & Evolutionary Biology	4+2	Dr. Rakesh Kumar
				Dr. D.P. Pandey
13.	Zoo.121	Comparative Anatomy and	4+2	Dr. Rakesh Kumar
		Developmental Biology of Vertebrates		
14.	Zoo 322	Reproductive Biology	4+2	Dr. Rakesh Kumar

Mast	Master's Programme						
1.	Agron 501	Modern Concepts in Crop Production	3+0	Dr. Rameshwar Kumar			
2.	PGS 503	Intellectual Property and its	1+0	Dr. Gopal Katna			
		management in agriculture					
Ph. D	Ph. D. Programme						
1.	Agron 602	Crop Ecology	2+0	Dr. Janardan Singh			

Sr. No.	Name of Student	Admission No.	
	7 th]	Batch (Sept. 2021)	
1.	Shreya Katoch	A-2018-01-101	
2.	Vibha Singh	A-2018-01-117	
3.	Ruchika Jarial	A-2018-01-085	
4.	Sonali	A-2018-01-106	
5.	Avantika Sharma	A-2018-01-028	
6.	Aarzoo	A-2018-01-005	
7.	Aakriti	A-2018-01-002	
8.	Saina Walia	A-2018-01-088	
9.	Kusum	A-2018-01-052	
10.	Shivani Gupta	A-2018-01-099	
11.	Shreya Guleria	A-2018-01-100	
12.	Muskan	A-2018-01-061	
13.	Ritesh Kumar	A-2018-01-080	
14.	Shaurya Bhardwaj	A-2018-01-094	
15.	Dhruv	A-2017-01-035	
16.	Suraj Sharma	A-2018-01-109	
17.	Sachin Verma	A-2018-01-086	
18.	Abhay Verma	A-2018-01-007	
	8 th B	atch (March 2022)	
1.	Amandeep Verma	A-2018-01-014	
2.	Ankit	A-2018-01-019	
3.	Ashish Sharma	A-2018-01-026	
4.	Diksha Kumari	A-2018-01-038	
5.	Koyal	A-2018-01-045	
6.	Kashish Sharma	A-2018-01-047	
7.	Keerti Sharma	A-2018-01-048	
8.	Muskan	A-2018-01-060	
9.	Nitika Thakur	A-2018-01-068	
10.	Prajwal Thakur	A-2018-01-073	
11.	Ritvik Dogra	A-2018-01-081	
12.	Robin Singh	A-2018-01-083	
13.	Shalini Dogra	A-2018-01-091	
14.	Shashwat Sood	A-2018-01-092	
15.	Shivalika	A-2018-01-096	
16.	Shreya Kumari	A-2018-01-102	
17.	Sonali Katoch	A-2018-01-107	
18.	Vani Mahendru	A-2018-01-114	

4.2 Experiential Learning Programme (ELP) on Organic Agriculture for the students of B.Sc. Agriculture, IVth year

4.3 Students' research guidance

Sr.	Name & Admission No.	Programme	Name of Guide	Guiding/guided
No.	of the students	C		
1.	Shilpa	Ph.D	Dr. Janardan Singh	Guided
	(A-2018-40-008)			
2.	Pooja	Ph.D	Dr. Janardan Singh	Guiding
	(A-2020-40-005)			
3.	Belal Ahmad	Ph.D	Dr. Janardan Singh	Guiding
	(A-2021-40-005)			
4.	Sachin Saharan	M.Sc	Dr. Janardan Singh	Guiding
	(A-2020-30-013)			
5.	Shagun Jaggi	M.Sc	Dr. Janardan Singh	Guiding
	(A-2021-30-019)			
6.	Rimzim	M.Sc	Dr. Janardan Singh	Guiding
	(A-2021-30-101)			
7.	Saleman	M.Sc	Dr. Janardan Singh	Guided
	(A-2018-30-026)			
8.	Raveena	Ph.D	Dr. Rameshwar	Guiding
	(A-2019-40-006)		Kumar	
9.	Arjun Singh	Ph.D	Dr. Rameshwar	Guiding
	(A-2021-40-004)		Kumar	
10.	Priyanshi Sood	M.Sc	Dr. Rameshwar	Guiding
	(A2020-30-012)		Kumar	
11.	Pranjal Sharma	M.Sc	Dr. Rameshwar	Guiding
	(A-2021-30-018)		Kumar	
12.	Raghav Sood	M.Sc	Dr. Gopal Katna	Guiding
	(A-2020-30-042)			
13.	Ira	M.Sc	Dr. Gopal Katna	Guiding
	(A-2020-30-038)			

5.1 Significant research achievements

5.1.1 Varietal Evaluation

- **Rice:** The genotypes HPR 2720 (38.16 q/ha), HPR 1068 (35.16 q/ha) and HPR 1156 (30.56 q/ha) were found significantly highest yielders out of the fifteen genotypes evaluated under natural farming conditions.
- Maize: Two local collections of maize germplasm *viz*. Sainj-local and Jwalapur-local were multiplied under natural farming conditions. Among these, the plant height, number of plants/m², number of cobs/plant were higher in Sainj local than that of Jwalapur local. The variety Sainj local was found to be significantly highest yielder and superior than that of Jwalapur local.
- **Finger millet:** The genotypes VL 324 (15.43 q/ha) followed by VL 149 (15.07 q/ha) were found to be highest yielder among the five genotypes of finger millet evaluated under natural farming conditions.
- Wheat: Out of the eighteen genotypes evaluated, HPWO-5 (17.83 q/ha), MCTLH-21 (16.66 q/ha), Kanku (16.51 q/ha) were superior to that of other genotypes.
- Lentil: Out of the fifteen genotypes of lentil evaluated, HPLO-3 (7.90 q/ha) and DKL-13-3 (7.86 q/ha) and DKL-13-6 (7.73 q/ha) were superior to that of other genotypes.
- **Barley:** A set of 9 varieties of barley were evaluated under natural farming conditions out of which BHS-352 (16.04 q/ha) followed by BHS-400 (14.58 q/ha) and VLB-118 (13.32 q/ha) were the promising varieties and at par with each other.

5.1.2 Crop production

- Paddy: Among two varieties of paddy *i.e.* variety I: HPR-1068 and variety II: HPR-2880, tested for productivity the organic package (application of FYM @ 10 t/ha and spray of compost tea) produced higher yields to the tune of 41.29 and 40.79 q/ha, respectively. However, the natural farming treatment (application of *ghanjeevamrit* @ 5q/ha + spray of *jeevamrit* at 14 days interval + mulching+ *whapsa*) was the second best treatment in terms of yield production in both the varieties.
- Maize: In maize+soybean intercropping system, the organic package (application of FYM @ 10 t/ha and spray of compost tea) produced higher maize grain equivalent yield (67.92 q/ha) followed by natural farming treatment *i.e.* application of *jeevamrit* at 14 days interval (30.71 q/ha) and soybean intercrop yield (13.22 q/ha) closely followed by the natural farming treatment Maize + soybean + spray of *Jeevamrit* at 14 days interval which is the most economical treatment in getting the higher maize equivalent yield (66.58 q/ha), gross returns (76331.60), net returns (29521.60) and B:C (1.63) as compared to the organic production system.

- **Fingermillet:** The organic package (application of FYM @ 10 t/ha and spray of compost tea) produced higher grain equivalent yield of fingermillet (12.14 q/ha) followed by the natural farming treatment *i.e.* Fingermillet + soybean (line sowing) + application of *jeevamrit* at 14 days interval (11.06 q/ha).
- In wheat+gram and wheat+lentil intercropping system, the organic package produced the higher wheat grain yield, wheat equivalent yield (15.20 q/ha) and lentil grain yield (4.21 q/ha). Whereas, the natural farming system system was found to be the most economical in getting the higher gross returns (Rs. 76331.60), net returns (Rs. 29521.60) and B:C (1.63) as compared to the organic production system.
- In wheat+pea and wheat+sarson intercropping systems, organic farming treatment produced higher wheat equivalent yield (44.13 q/ha) and grain yield of peas (15.9 q/ha). However, natural farming treatment resulted in higher net returns and B:C as compared to the organic farming treatment.
- Among two varieties of oats *i.e.* Kent and Palampur-I, both the varieties produced significantly higher grain yield, net returns and B:C under natural farming treatments as compared to the organic farming treatments.

5.1.3 Soil & microbial studies

- The soil pH was in the range of 4.97 to 5.94 and EC was in the range of 0.01- 0.1. In case of paddy, chemical properties of soil *i.e.* percent organic carbon, microbial biomass carbon, available N,P,K and microbiological properties *i.e.* general bacterial count, phosphate solubilizing bacterial count, actinomycetes bacterial count and nitrogen fixing bacterial count were recorded highest at 14 days interval treatment of *jeevamrit* under SPNF conditions while the dehydrogenase activity (DHA) and fungal count were enhanced under organic package.
- Natural farming system enhanced the soil chemical properties and microbiological properties in comparison to the organic package in maize intercropping system.
- The soil chemical properties *i.e.* percent organic carbon, dehydrogenase activity, microbial biomass carbon, available N,P,K and fungal count were recorded maximum in natural system while microbiological properties were recorded highest in organic package in fingermillet crop.

5.1.4 Microbial studies in cow urine and cow dung

- i. Total viable counts (TVC) of 10% (19/189) animals were more than 300 crores cfu/gm. This included cattle of
 - a. Indigenous breeds 12.00% (n=6/50)
 - b. Pahari 9.43% (n=5/53)
 - c. Crossbred 10.86% (n=5/46)
 - d. Exotic breed 13.63% (n=3/22)
- ii. TVC > 300 crores cfu/gm were non-significantly associated with all the breeds of cattle.
- iii. None of the churu or buffalo dung samples had TVC \ge 300 crores cfu/gm.
- iv. Highest TVC counts for buffalo and churu were 226 and 50 crores cfu/gm, respectively.

- v. Nitrogen fixing bacteria counts >300 crores cfu/gm were recorded in indigenous and exotic breeds of cattle.
- vi. Highest nitrogen fixing bacteria counts for Churu and Buffalo were 7.7 crores and 22.5crores cfu/gm respectively.

5.1.5 Human Resource Development

During the period under report, 468 farmers, 81 students and 25 officials belonging to different line departments/Universities were imparted training on various aspects of natural farming at ZBNF centre, CSKHPKV, Palampur

5.2 Experimental Results

5.2.1 Crop demonstrations

Kharif 2021

Plant production under irrigated conditions

During *Kharif* 2021 the results of the demonstration conducted at Zero Budget Natural Farm, CSKHPKV, Palampur reflects that under irrigated conditions the yield of paddy (37.75 q/ha), finger millet equivalent yield (28.56 q/ha), mash (12.85 q/ha) and cowpea (11.65 q/ha) was higher under natural farming system as compared to organic package. Among pulses, vegetables and oilseeds the yields of mash (12.85 q/ha), cowpea (11.65 q/ha), green chilli (27.5 q/ha), okra (22.5 q/ha) and soybean (31.0 q/ha) were also higher under natural farming system as compared to organic package. Whereas, under organic farming conditions the yields of maize alone (24.5 q/ha), maize equivalent yield (60.9 q/ha), ricebean (14.75 q/ha), adzukibean and frenchbean (9.0 q/ha) were higher as compared to the natural farming system (Table 1).

Sr. No.	Crops		Yield (q/ha))
		NF	Organic	Control
a.	Cereals/Millets			
i.	Paddy	37.75	36.25	26.25
ii.	Maize	21.00	24.50	14.00
iii.	Finger millet+Soybean (Finger millet equiv. yield)	28.56	27.35	17.83
iv.	Maize +Soybean (Maize grain equiv. yield)	52.73	60.09	30.51
b.	Pulses			
i.	Mash	12.85	11.25	7.00
ii.	Ricebean	14.50	14.75	10.50
iii.	Adzukibean	14.50	14.75	10.50
iv.	Cowpea	11.65	11.10	6.25
с.	Vegetables			
i.	Green chilli	27.50	23.50	13.50
ii.	Frenchbean	7.50	9.00	3.00
iii.	Okra+ Beans (As green manure)	22.50	19.00	12.50
d.	Oilseed (Soybean)	31.00	29.00	19.50

 Table 1. Comparative performance of different crops under irrigated conditions

*NF: Natural Farming

Plant production under rainfed conditions

The results of the experiments reflected that among cereals and pulses the maize equivalent yield (47.86 q/ha), finger millet equivalent yield (27.68 q/ha), yield of mash (6.0 q/ha), ricebean (10.50 q/ha), adzukibean (9.75 q/ha) and soybean (23.75 q/ha) were higher under natural farming practices as compared to the organic farming system. Whereas, the organic package produced the higher yields of maize alone (17.5 q/ha) and cowpea (9.5 q/ha) as compared to the natural farming system under rainfed conditions (Table 2).

Sr.	Crops		Yield (q/	ha)
No.		NF	Organic	Control
a.	Cereals			
i.	Maize	14.25	17.50	7.90
ii.	Finger millet+ Soybean (Finger millet equiv. yield)	27.68	26.93	18.25
iii.	Maize +Soybean (Maize grain equiv. yield)	47.86	43.60	29.42
b.	Pulses			
i.	Mash	6.00	5.00	4.50
ii.	Ricebean	10.5	8.75	6.00
iii.	Adzukibean	9.75	7.50	3.75
iv.	Cowpea	9.00	9.50	6.00
c.	Oilseed			
	Soybean	23.75	22.50	13.90

Table 2. Comparative performance of different crops under rainfed conditions

Rabi 2021-22

Demonstrations on different crops under irrigated conditions

The results of the demonstrations conducted under irrigated conditions reflects that among cereals the yield of wheat, lentil, wheat equivalent yield in wheat+gram and wheat+linseed intercropping system was higher under natural farming system. Whereas, yield of gram, *gobhi sarson*, wheat equivalent yield in wheat+sarson, wheat+peas and wheat+lentil intercropping system was higher under organic farming system as compared to the natural farming practices (Table 3).

Sr.	Crops		Yield (q/ha)				
No.		NF	NF Organic Control				
a.	Cereals, pulses oilseeds						
i.	Wheat	32.25	29.25	24.00			
ii.	Gram	9.00	11.00	6.50			
iii.	Lentil	10.50	8.75	5.60			
iv.	Gobhi Sarson	11.50	12.25	8.75			
v.	Wheat+gram – (Wheat equiv. yield)	38.71	38.14	20.89			
vi.	Wheat+ Sarson (Wheat equiv. yield)	28.60	31.31	13.29			
vii.	Linseed +Peas (Linseed equiv. yield)	13.43	14.99	7.38			
viii.	Wheat+linseed -(Wheat equiv. yield)	24.71	20.06	12.50			
ix.	Wheat+lentil -(Wheat equiv. yield)	27.27	33.19	19.53			

 Table 3. Comparative performance of different crops under irrigated conditions

b.	Vegetables			
i.	Garlic	44.00	36.50	16.00
	Methi	0.75	0.60	4.00
ii.	Peas	59.00	47.00	22.00
	Methi	0.68	0.85	4.75
iii.	Onion	93.50	109.00	37.50
iv.	Radish	54.00	60.00	11.00
v.	Methi	2.25	2.75	1.00

Plant production under rainfed conditions

Under rainfed conditions, the results of demonstrations revealed that the yield of gram, lentil and wheat equivalent yield in wheat+gram intercropping system was higher under natural farming system. Whereas, yields of wheat, *Gobhi sarson*, Linseed equiv. yield (Linseed+ peas), Wheat equiv. yield in wheat+sarson and wheat+linseed intercropping system was higher under organic farming system as compared to the natural farming practices (Table 4).

Sr.	Crops	Yield (q/ha)				
No.		NF	Organic	Control		
i.	Wheat	26.75	29.75	17.25		
ii.	Gram	7.50	6.75	4.40		
iii.	Lentil	11.00	10.55	7.50		
iv.	Wheat+gram –(Wheat equiv. yield)	31.97	30.07	20.06		
v.	Linseed+ peas (Linseed equiv. yield)	13.63	14.26	9.59		
vi.	Gobhi sarson	10.00	11.10	6.65		
vii.	Wheat+sarson- (Wheat equiv. yield)	23.75	29.92	17.79		
viii.	Wheat+linseed- (Wheat equiv. yield)	22.61	25.19	10.34		

 Table 4. Comparative performance of different crops under rainfed conditions

Soil and microbiological studies

The results of the experiments conducted under irrigated conditions showed that the pH was in the range of 4.78 to 5.2 and EC was in the range of 0.09 to 0.16. Percent organic carbon, dehydrogenase activity and microbial biomass carbon were highest in natural farming treatment than organic farming treatment. Available N, P and K were the highest in natural farming treatments for all crops than organic treatment. In case of soybean available P, microbial biomass carbon and dehydrogenase were highest in organic treatment. In case of Adzukibean percent organic carbon and microbial biomass carbon were highest in organic treatment (Table 5).

The results of the experiments conducted under rainfed conditions showed that the pH was in the range of 4.49 to 5.18 and EC was in the range of 0.09 to 0.14. Percent organic carbon was highest in natural farming treatments for maize, soybean, maize+soybean crops than organic treatment. Dehydrogenase activity was highest in soybean, fingermillet +soybean, cowpea, mash, adzukibean and ricebean crops than organic treatments. Microbial biomass carbon was highest in natural farming treatment than organic farming treatment for most of the crops. Available N, P

and K was highest in natural farming treatment for maize, soybean, maize+ soybean, fingermillet + soybean, cowpea, mash, adzukibean and ricebean crops (Table 6).

Kharif	Sample	% OC	Dehydrogenase	Microbial	Available		Available	pН	EC
Crops	Name		activity (µg	biomass	N (kg ⁻¹ ha)	P(kg ⁻¹ ha)	K(kg ⁻¹ ha)		
			TPFg ⁻¹ soil hr ⁻¹)	carbon (µg/g)					
		0-15	0-15	0-15	0-15	0-15	0-15	0-15	0-15
Green	A1 (NF)	0.66	4.78	69.57	250	32.24	134.70	5.14	0.16
Chilli +	A1 (ORG)	0.64	4.76	61.65	219	29.74	125.72	4.99	0.11
Beans	A1 (CON)	0.54	4.72	50.93	191	20.04	116.74	4.8	0.14
	A2 (NF)	0.57	4.40	69.72	216	31.24	172.86	4.98	0.17
Okra+	A2 (ORG)	0.55	4.18	61.80	213	24.28	121.23	4.87	0.09
Beans	A2 (CON)	0.44	3.31	57.45	206	20.83	112.25	4.78	0.13
	A3 (NF)	0.58	4.28	70.03	244	28.22	139.19	5.2	0.11
Maize	A3 (ORG)	0.57	4.26	66.77	241	26.88	114.49	5.05	0.13
	A3 (CON)	0.45	3.86	54.66	216	21.28	110.01	5.04	0.11
Soybean	A4 (NF)	0.62	4.82	78.54	272	29.00	177.35	5.1	0.11
(Harit	A4 (ORG)	0.61	4.79	79.88	250	23.52	162.76	5.0	0.12
soya)	A4 (CON)	0.45	3.79	48.14	191	19.04	112.25	4.99	0.13
Maize+	A5 (NF)	0.60	4.86	63.36	253	30.24	125.49	5.0	0.11
Soybean	A5 (ORG)	0.59	4.80	60.56	213	21.28	122.80	4.99	0.11
	A5 (CON)	0.51	4.56	41.92	197	21.28	110.01	4.98	0.14
Finger	A6 (NF)	0.57	5.58	63.67	255	28.00	130.21	5.05	0.12
millet+	A6 (ORG)	0.56	5.40	60.56	244	25.76	110.11	4.9	0.12
Soybean	A6 (CON)	0.52	5.20	44.72	191	19.04	107.98	5.0	0.13
	A7 (NF)	0.63	5.36	70.81	247	32.48	116.74	5.2	0.11
Cowpea	A7 (ORG)	0.62	5.33	59.32	244	30.24	114.49	4.97	0.13
	A7 (CON)	0.52	5.19	52.80	188	21.28	91.59	5.18	0.14
	A8 (NF)	0.56	5.02	68.32	275	30.24	150.19	5.1	0.12
Paddy	A8 (ORG)	0.53	4.97	65.53	263	25.76	147.72	4.99	0.13
	A8 (CON)	0.50	4.58	54.35	191	21.28	104.84	5.1	0.14
	A9 (NF)	0.57	4.75	69.88	282	25.76	169.72	5.05	0.13
Paddy	A9 (ORG)	0.56	4.73	63.67	270	21.28	167.25	4.9	0.14
	A9 (CON)	0.52	4.70	50.31	188	21.28	122.35	5.08	0.11
	A10(NF)	0.63	4.50	66.77	250	32.48	161.41	4.9	0.14
Mash	A10(ORG)	0.62	4.47	60.56	245	31.24	159.17	5.08	0.14
	A10(CON)	0.46	4.48	63.67	210	21.28	123.02	5.0	0.12
	A11 (NF)	0.62	4.88	62.42	269	32.48	176.46	5.0	0.12
Adzukib	A11(ORG)	0.63	4.65	62.89	264	31.24	163.21	4.9	0.14
ean	A11(CON)	0.48	4.38	51.24	190	25.52	123.02	4.98	0.12
	A12 (NF)	0.57	4.52	69.88	263	30.24	183.86	5.03	0.11
Ricebean	A12(ORG)	0.56	4.51	64.60	259	28.00	174.88	4.93	0.12
	A12(CON)	0.47	4.40	52.80	192	26.52	132.00	5.0	0.14
Soybean	A13 (NF)	0.66	4.30	75.31	282	24.30	134.70	5.01	0.11
(Palam	A13(ORG)	0.64	4.31	72.98	272	26.76	132.45	4.99	0.12
soya)	A13(CON)	0.53	4.30	49.38	194	23.52	112.25	5.05	0.13

Table 5. Estimation of soil (0-15 cm) parameters of irrigated experiment at harvest

Kharif			Dehydrogenase	Microbial	Available	Available P	Available	pН	EC
Crops		%	activity (µg	biomass	N (kg ⁻¹ ha)	(kg ⁻¹ ha)	K (kg ⁻¹ ha)	_	
	Sample	OC	TPFg ⁻¹ soil hr ⁻¹)	carbon					
	Name	0-15	0-15	0-15	0-15	0-15	0-15	0-15	0-15
Maize	B1 (NF)	0.51	3.58	74.54	291	32.48	125.72	5.18	0.09
	B1(ORG)	0.48	3.59	71.43	288	30.24	121.23	4.86	0.09
	B1(CON)	0.44	3.54	51.55	250	19.04	96.08	4.69	0.09
Soybean	B2 (NF)	0.53	4.63	78.88	291	32.48	139.19	4.98	0.10
	B2(ORG)	0.51	4.61	75.93	219	30.24	137.39	4.95	0.11
	B2(CON)	0.47	4.56	55.12	266	19.04	128.86	4.63	0.09
Maize+	B3 (NF)	0.51	4.63	80.75	282	28.00	142.33	4.89	0.10
Soybean	B3(ORG)	0.50	4.65	76.71	279	25.76	141.88	4.83	0.10
	B3(CON)	0.40	4.59	54.04	188	19.04	119.20	4.67	0.08
Finger	B4 (NF)	0.42	5.45	69.88	285	30.24	143.23	4.56	0.11
millet	B4(ORG)	0.43	5.44	65.53	279	28.00	127.96	4.90	0.10
+Soybean	B4(CON)	0.39	5.40	51.24	219	19.04	125.72	4.92	0.09
Cowpea	B5 (NF)	0.43	5.61	66.77	260	34.72	148.17	4.99	0.14
	B5(ORG)	0.44	5.58	58.54	257	28.00	118.98	4.96	0.11
	B5(CON)	0.41	5.54	49.84	188	23.52	116.74	4.97	0.10
Mash	B6 (NF)	0.45	4.68	68.64	282	30.24	148.17	4.92	0.14
	B6(ORG)	0.46	4.54	59.68	279	28.00	139.19	4.88	0.12
	B6(CON)	0.44	4.45	55.90	219	18.81	127.96	4.88	0.10
Adzuki	B7 (NF)	0.49	4.05	71.43	254	34.72	137.39	4.99	0.13
bean	B7(ORG)	0.51	4.04	69.88	247	34.72	112.25	4.92	0.10
	B7(CON)	0.42	3.87	51.24	219	21.28	101.69	4.49	0.09
Ricebean	B8(NF)	0.45	4.38	68.32	250	34.72	130.88	4.99	0.14
	B8(ORG)	0.46	4.37	67.55	247	30.24	119.43	4.70	0.11
	B8(CON)	0.45	4.16	42.39	216	21.28	106.18	4.96	0.09

Table 6. Estimation of soil (0-15) parameters of rainfed experiment at harvest

In experiments conducted under irrigated conditions, general bacterial count was higher in natural farming treatment than organic treatment for green chilli, okra, maize, soybean, fingermillet, paddy, mash, adzukibean and ricebean. Fungus count was higher in natural farming treatment than organic treatment for most of the crops. Actinomycetes count and P-solubilizing bacterial count was also higher in natural farming treatment than organic treatment for maize+soybean, finger millet+soybean, green chilli+beans, adzukibean, mash, cowpea, ricebean and paddy crops. Nitrogen fixing bacterial count was higher in natural farming treatment than organic treatment than organic treatment than paddy crops. Nitrogen fixing bacterial count was higher in natural farming treatment than organic treatment than organic treatment than paddy crops. Nitrogen fixing bacterial count was higher in natural farming treatment than organic treatment than organic treatment than organic treatment than paddy crops. Nitrogen fixing bacterial count was higher in natural farming treatment than organic treatment than organic treatment than paddy crops. Nitrogen fixing bacterial count was higher in natural farming treatment than organic treatment than organic treatment crops (Table 7).

Kharif	Sample	Nutrient Agar	Fungus	P-Solubilizers	Actinomycetes	N fixers
Crops		CFU X10 ⁴	CFU X10 ²	CFU X10 ³	CFU X10 ³	CFU X10 ³
Green	A1 (NF)	29.3	15	25.7	15.4	23.0
Chilli+Beans	A1 (ORG)	27.1	7	24.8	13.8	17.8
	A1 (CON)	17.8	5	16.1	12.2	12.1
	A2 (NF)	22.5	14	22.7	21.8	23.8
Okra+Beans	A2 (ORG)	27.8	11	25.0	22.7	21.2
	A2 (CON)	11.8	2	6.3	8.4	8.8
	A3 (NF)	16.5	7	9.2	11.8	11.8
Maize	A3 (ORG)	13.2	9	8.1	11.1	11.0
	A3 (CON)	9.2	14	7.1	7.8	6.7
Soybean	A4 (NF)	20.1	5	10.7	15.2	11.2

Table 7. Estima	ation of Microbial cou	int in soil (0-15 cm	n depth) of irrigated	l experiment
Lable / Louin	thom of miler oblar cot		i deptil) of hinguite	a caper miene

(TT ')		165	1.5	0.0	10.0	0.4
(Harit	A4 (ORG)	16.5	15	9.8	13.3	8.4
Soya)	A4 (CON)	8.8	10	7.0	8.3	6.8
	A5 (NF)	14.4	15	5.5	6.8	8.7
Maize+	A5 (ORG)	13.8	12	4.3	5.4	5.4
Soybean	A5 (CON)	5.7	11	3.1	4.7	4.9
	A6 (NF)	25.7	17	12.7	17.2	16.4
Fingermillet	A6 (ORG)	23.5	14	11.1	15.8	15.2
+Soybean	A6 (CON)	15.1	7	4.4	10.8	5.2
	A7 (NF)	22.1	15	5.3	14.4	20.4
Cowpea	A7 (ORG)	20.7	13	3.8	12.6	14.8
	A7 (CON)	4.6	9	2.4	3.1	4.2
	A8 (NF)	12.5	14	4.8	16.2	6.2
Paddy	A8 (ORG)	11.4	14	3.7	12.8	5.0
	A8 (CON)	5.3	10	3.0	4.7	2.9
	A9 (NF)	17.0	13	6.3	15.3	15.7
Paddy	A9 (ORG)	12.1	11	5.7	10.5	10.5
	A9 (CON)	9.2	8	3.5	9.2	5.3
	A10(NF)	24.8	13	8.2	16.8	16.2
Mash	A10 (ORG)	23.0	8	9.1	10.8	9.3
	A10 (CON)	21.7	8	5.1	9.1	8.3
Adzukibean	A11 (NF)	7.5	17	4.0	5.8	5.2
	A11 (ORG)	5.2	12	3.3	3.7	4.5
	A11 (CON)	4.1	10	7.3	3.2	3.4
	A12 (NF)	7.8	16	4.7	4.7	6.8
Ricebean	A12 (ORG)	6.5	14	3.9	3.8	4.7
	A12(CON)	3.7	11	2.9	3.3	3.0
Soybean	A13 (NF)	8.5	15	4.2	5.8	5.7
(Palam Soya)	· · · ·	6.1	12	3.7	4.1	5.3
	A13 (CON)	3.8	10	2.8	3.1	2.8

In rainfed experiments, general bacterial count, fungus count, phosphate solubilizer bacterial count, actinomycetes count, nitrogen fixing bacterial count were highest in natural farming treatment than organic treatment for most of the crops (Table 8).

Kharif	Sample	Nutrient	Fungus	P-Solubilizers	Actinomycetes	Nitrogen
Crops		Agar				fixers
		CFU X10 ⁴	CFU X10 ²	CFU X10 ³	CFU X10 ³	CFU X10 ³
Maize	B1 (NF)	15.8	5	7.5	7.5	7.5
	B1 (ORG)	17.4	4	7.0	6.2	6.9
	B1(CON)	8.3	3	5.8	5.7	5.4
Soybean	B2 (NF)	27.1	5	7.6	6.7	6.8
	B2 (ORG)	23.7	5	6.5	5.6	6.5
	B2(CON)	7.7	4	5.8	4.9	5.1
Maize+	B3 (NF)	28.9	8	7.2	6.5	6.8
Soybean	B3 (ORG)	22.1	7	6.5	6.3	6.5
	B3(CON)	5.5	5	5.8	5.7	5.8
Fingermillet	B4 (NF)	28.9	7	7.9	7.2	7.1
+	B4 (ORG)	24.2	7	6.9	6.9	6.7
Soybean	B4(CON)	8.1	4	6.5	5.7	5.7

 Table 8. Estimation of Microbial count in soil (0-15 cm depth) of rainfed experiment

Cowpea	B5 (NF)	14.5	7	6.9	7.5	9.8
	B5 (ORG)	9.2	5	6.6	6.5	8.5
	B5(CON)	7.3	4	5.0	5.5	5.3
Mash	B6 (NF)	29.3	7	7.3	7.2	8.2
	B6 (ORG)	23.3	5	6.9	6.8	6.8
	B6(CON)	6.7	4	5.8	5.5	5.0
Adzukibean	B7 (NF)	28.3	6	8.0	7.8	7.8
	B7 (ORG)	22.7	6	7.1	6.7	6.9
	B7(CON)	7.1	5	6.5	5.9	5.7
Ricebean	B8(NF)	29.2	7	8.4	7.8	7.8
	B8 (ORG)	28.8	6	7.8	7.0	7.0
	B8(CON)	8.3	5	6.1	5.8	6.1

5.2.2 Development of package of practices of SPNF

i. Productivity and economics of paddy under natural farming system

Varieties: HPR-1068 and HPR-2880 Design: RBD Replications: 3 Seed treatment with *Beejamrit*, basal application of *Ghanjeevamrit* @ 5q/ha and *Jeevamrit* @ 500 l/ha except organic and control.

Treatments: 10

- T₁ Paddy (Var.1) + spray of *Jeevamrit* at 14 days interval
- T₂ Paddy (Var.1) + spray of *Jeevamrit* at 21 days interval
- T₃ Paddy (Var.1) + spray of *Jeevamrit* at 28 days interval
- T₄ Paddy (Var.2) + spray of *Jeevamrit* at 14 days interval
- T₅ Paddy (Var.2) + spray of *Jeevamrit* at 21 days interval
- T₆ Paddy (Var.2) + spray of *Jeevamrit* at 28 days interval
- T₇ Organic package (Var.1)
- T₈ Organic package (Var.2)
- T₉ Absolute control (Var.1)
- T₁₀ Absolute control (Var.2)

To study the effect of natural farming inputs on the productivity and economics of paddy, an experiment was conducted at Zero Budget Natural Farm, CSKHPKV Palampur during *Kharif* 2021. A perusal of the data depicts that under organic farming treatment, application of FYM @ 10 t/ha + spray of compost tea at 15 days resulted in higher yields in both the varieties of paddy *i.e.* 41.29 q/ha and 40.79 q/ha, respectively. Whereas, under natural farming system, application of *Jeevamrit* at 14 days interval produced paddy grain yield 40.66 q/ha in variety 2 and 39.69 q/ha in variety 1 which is at par with the organic package. However, the natural farming treatment along with *Jeevamrit* at 14 days interval was observed to be the most economical treatment with higher net returns of Rs. 56566 and B:C of 1.86 as compared to the organic package (Table 9).

Treat	tment	Grain yield	Gross	Net returns	B:C
		(q/ha)	returns (Rs.)	(Rs.)	
T_1	Paddy (Var.1) + Jeevamrit at 14 DI	39.69	85142	54804	1.80
T ₂	Paddy (Var.1) + <i>Jeevamrit</i> at 21 DI	38.22	81688	52100	1.76
T ₃	Paddy (Var.1) + Jeevamrit at 28 DI	29.55	63008	34170	1.18
T_4	Paddy (Var.2) + <i>Jeevamrit</i> at 14 DI	40.66	86903	56566	1.86
T ₅	Paddy (Var.2) + <i>Jeevamrit</i> at 21 DI	39.47	84472	54885	1.85
T ₆	Paddy (Var.2) + Jeevamrit at 28 DI	36.32	77459	48622	1.68
T ₇	Organic package (Var.1)	41.29	88154	43891	0.99
T ₈	Organic package (Var.2)	40.79	86889	42627	0.96
T 9	Absolute control (Var.1)	17.59	37723	15460	0.69
T ₁₀	Absolute control (Var.2)	26.07	55391	33129	1.48
CD a	t 5%	4.14	-	-	-

Table 9. Effect of treatments on the productivity and economics of paddy

ii. Productivity and economics of maize intercropping system under natural farming system

Varieties: *Bajaura Makka* Lobia: Him Lobia-I Design: RBD Replication: 3
Seed treatments with *Beejamrit*, basal application of *Ghanjeevamrit* @ 5q/ha and *Jeevamrit*@ 500 l/ha except organic and control.

Treatments: 13

- T₁ Maize + lobia + spray of *Jeevamrit* at 14 days interval
- T₂ Maize + lobia + spray of *Jeevamrit* at 21 days of interval
- T₃ Maize + lobia + spray of *Jeevamrit* at 28 days of interval)
- T₄ Maize + soybean + spray of *Jeevamrit* at 14 days of interval
- T₅ Maize + soybean + spray of *Jeevamrit* at 21 days of interval
- T₆ Maize + soybean + spray of *Jeevamrit* at 28 days of interval
- T₇ Maize + spray of *Jeevamrit* at 14 days of interval
- T₈ Maize + spray of *Jeevamrit* at 21 days of interval
- T₉ Maize + spray of *Jeevamrit* at 28 days of interval
- T₁₀ Organic package- Maize + soybean
- T₁₁ Organic package- maize + lobia
- T₁₂ Absolute control (Maize)
- T₁₃ Maize sole (organic)

An experiment was conducted to study the effect of natural farming inputs on the productivity and economics of maize intercropping system at Natural Farming centre, CSKHPKV, Palampur during *Kharif* 2021. The results of the experiment revealed that the organic package treatment T_{10} produced higher maize equivalent yield (67.92 q/ha) and soybean intercrop yield (13.22 q/ha) closely followed by the natural farming treatment Maize + soybean + spray of *Jeevamrit* at 14 days interval which is the most economical treatment in getting the higher maize equivalent yield (66.58 q/ha), gross returns (76331), net returns (29521) and B:C (1.63) as compared to the organic production system. The maize grain yield (24.20 q/ha) and

lobia grain yield (10.35 q/ha) were higher under this treatment as compared to the organic package (Table 10).

	Treatment		ield (q/	ha)	MEqY	Gross	Net	B: C
		Maize	Lobia	Soybean	(q/ha)	return	Return	
						(Rs.)	(Rs.)	
T ₁	Maize+lobia+Jeevamrit at 14 DI	21.82	10.35	-	46.33	70200	23390	1.50
T_2	Maize+lobia+Jeevamrit at 21 DI	20.36	7.37	-	37.82	59263	13253	1.29
T ₃	Maize+ lobia+ <i>Jeevamrit</i> at 28 DI	18.47	6.83	-	34.64	50695	6085	1.14
T_4	Maize+soybean+Jeevamrit at 14 DI	24.20	-	12.39	66.58	76331	29521	1.63
T 5	Maize+soybean+Jeevamrit at 21 DI	22.88	-	10.47	58.70	65280	19270	1.42
T_6	Maize+soybean+Jeevamrit at 28 DI	20.15	-	7.64	46.28	60581	15971	1.36
T ₇	Maize+Jeevamrit at 14 DI	21.17	-	-	21.17	60362	16537	1.38
T ₈	Maize + Jeevamrit at 21 DI	19.94	-	-	19.94	51533	8508	1.20
T9	Maize + Jeevamrit at 28 DI	17.78	-	-	17.78	48131	6506	1.16
T ₁₀	Organic package-Maize+ soybean	22.69	-	13.22	67.92	72510	21435	1.42
T ₁₁	Organic package- maize+ lobia	20.33	9.84	-	43.64	78929	27854	1.55
T ₁₂	Absolute control (Maize)	20.16	-	-	20.16	62888	15763	1.33
T ₁₃	Maize sole (organic)	12.36	-	-	12.36	31633	5633	1.12
	CD at 5%	2.28	1.30	1.72	4.70	-	-	-

Table 10.Effect of treatments on the productivity & economics of maize intercropping system

MEqY: Maize grain equivalent yield

iii. Productivity and economics of fingermillet under natural farming system

Varieties: BL-149 Design: RBD Replication: 3

Seed treatments with Beejamrit, basal application of *Ghanjeevamrit* @ 5q/ha and *Jeevamrit* @ 500 l/ha except organic and control.

Treatments: 10

- T₁ Fingermillet+ soybean (broadcasting) + spray of *Jeevamrit* at 14 days interval
- T₂ Fingermillet+ soybean (broadcasting) + spray of *Jeevamrit* at 21 days interval
- T₃ Fingermillet+ soybean (broadcasting) + spray of *Jeevamrit* at 28 days interval
- T₄ Fingermillet+ soybean (line sowing) + spray of *Jeevamrit* at 14 days interval
- T₅ Fingermillet+ soybean (line sowing) + spray of *Jeevamrit* at 21 days interval
- T₆ Fingermillet+ soybean (line sowing) + spray of *Jeevamrit* at 28 days interval
- T₇ Fingermillet+ soybean (broadcasting) + Organic package
- T₈ Fingermillet+ soybean (line sowing) + Organic package
- T₉ Fingermillet+ soybean (broadcasting) + Absolute control
- T_{10} Fingermillet+ soybean (line sowing) + Absolute control

An experiment was conducted at Natural Farming centre, to study the effect of natural farming inputs on fingermillet + soybean intercropping system during *Kharif* 2021. The results of the experiment presented in Table 11 revealed that the treatment T_8 (Fingermillet + soybean

(line sowing) + organic package) followed by Fingermillet+ soybean (line sowing) + spray of *Jeevamrit* at 14 days interval produced higher equivalent yield of fingermillet *i.e.* 20.91 q/ha and 19.57 q/ha, respectively. However, the gross returns, net returns and benefit cost ratio was recorded higher with the treatment T_4 Fingermillet+ soybean (line sowing) + *Jeevamrit* at 14 days intervals compared to the organic package (Table 11).

	Treatment	Yield	l (q/ha)	FMG Eq	Gross	Net	B:C
		Finger millet	Soybean	Yield (q/ha)	return (Rs)	Return (Rs)	
T ₁	Fingermillet+ soybean (broadcasting) + Jeevamrit at 14 DI	3.22	5.70	13.19	39723	12435	0.46
T ₂	Fingermillet+ soybean (broadcasting) + Jeevamrit at 21 DI	2.99	5.26	12.19	36732	10194	0.38
T ₃	Fingermillet+ soybean (broadcasting) + Jeevamrit at 28 DI	2.81	4.92	11.42	34448	8660	0.34
T 4	Fingermillet+ soybean (line sowing) + Jeevamrit at 14 DI	5.25	8.18	19.57	59041	30003	1.03
T ₅	Fingermillet+ soybean (line sowing) + <i>Jeevamrit</i> at 21 DI	4.62	7.70	18.09	54605	26318	0.93
T ₆	Fingermillet+ soybean (line sowing) + Jeevamrit at 28 DI	3.84	7.14	16.34	49374	21836	0.79
T ₇	Fingermillet+ soybean (broadcasting) + Organic package	3.07	5.73	13.10	39494	1781	0.05
T ₈	Fingermillet+ soybean (line sowing) + Organic package	6.14	8.44	20.91	58183	18720	0.47
T9	Fingermillet+ soybean (broadcasting) + Absolute control	6.60	2.62	11.19	34818	17105	0.97
T ₁₀	Fingermillet+ soybean (line sowing) + Absolute control	1.55	3.55	7.76	23294	3832	0.20
CD	at 5%	2.70	1.22	1.96	-	-	-

 Table 11. Effect of treatments on the productivity and economics of finger millet

FMG Eq: Finger millet Equivalent yield

iv. Effect of scheduling of *Jeevamrit* spray on productivity and economics of wheat based intercropping system under natural farming conditions

Design: RBD Replication: 3

Seed treatments with *Beejamrit*, basal application of *Ghanjeevamrit* @ 5q/ha in all treatments except organic and absolute control

Treatments: 13

- T_1 Wheat + gram (1:1) + spray of *Jeevamrit* at 14 days interval
- T₂ Wheat + gram (1:1) + spray of *Jeevamrit* at 21 days interval
- T₃ Wheat + gram (1:1) + spray of *Jeevamrit* at 28 days interval
- T₄ Wheat + lentil (1:1) + spray of *Jeevamrit* at 14 days interval
- T₅ Wheat + lentil (1:1) + spray of *Jeevamrit* at 21 days interval
- T_6 Wheat + lentil (1:1) + spray of *Jeevamrit* at 28 days interval
- T₇ Wheat (sole crop) + spray of *Jeevamrit* at 14 days interval

- T₈ Wheat (sole crop) + spray of *Jeevamrit* at 21 days interval
- T₉ Wheat (sole crop) + spray of *Jeevamrit* at 28 days interval
- T₁₀ Organic package- Wheat alone
- T_{11} Organic package- Wheat + gram
- T_{12} Organic package- Wheat + lentil
- T_{13} Absolute control (Wheat + gram)

An experiment was conducted at Natural Farming centre, to study the effect of natural farming inputs on the productivity and economics of wheat+gram and wheat+lentil intercropping system during *Rabi* 2021-22. The results of the experiment conducted on wheat+gram and wheat+lentil intercropping system depicted that the organic package produced the higher wheat grain yield, wheat equivalent yield (15.20 q/ha) and lentil grain yield (4.21 q/ha) in treatment T_{11} (Organic package-wheat + gram). Whereas, the natural farming system treatment T_4 (wheat+lentil (1:1) + *jeevamrit* at 14 days interval) was found to be the most economical in getting the higher gross returns (Rs. 76331), net returns (Rs. 29521) and B:C (1.63) as compared to the organic production system (Table 12).

Tre	atment	Yi	eld (q/h	a)	WEQ	Gross	Net returns	B:C
		Wheat	Gram	Lentil	(q/ha)	returns(Rs.)	(R s)	
T_1	Wheat+gram (1:1)+ <i>Jeevamrit</i> at 14 DI	13.22	3.62	-	13.80	70200	23390	1.50
T_2	Wheat+gram (1:1)+ <i>Jeevamrit</i> at 21 DI	12.10	2.42	-	12.79	59263	13253	1.29
T_3	Wheat+gram (1:1)+ <i>Jeevamrit</i> at 28 DI	10.28	2.01	-	13.13	50695	6085	1.14
T_4	Wheat+lentil (1:1)+Jeevamrit at 14 DI	14.20	-		13.00	76331	29521	1.63
T_5	Wheat+lentil (1:1)+Jeevamrit at 21 DI	13.53	-	3.92	13.86	65280	19270	1.42
T_6	Wheat+lentil (1:1)+Jeevamrit at 28 DI	12.23	-	2.45	14.22	60581	15971	1.36
T_7	Wheat (sole crop) + <i>Jeevamrit</i> at 14 DI	16.27	-	2.28	13.07	60362	16537	1.38
T_8	Wheat (sole crop)+Jeevamrit at 21 DI	13.25	-	-	11.77	51533	8508	1.20
T9	Wheat (sole crop)+Jeevamrit at 28 DI	13.11	-	-	12.59	48131	6506	1.16
T_{10}	Organic package- Wheat alone	14.04	3.56	-	11.33	72510	21435	1.42
T_{11}	Organic package- Wheat + gram	14.40	-	4.21	15.20	78929	27854	1.55
T ₁₂	Organic package- Wheat + lentil	16.87	-	-	14.92	62888	15763	1.33
T ₁₃	Absolute control (Wheat + gram)	8.12	-	-	8.27	31633	5633	1.12
CD	at 5%	1.69	0.41	0.39	2.03		-	-

Table 12. Effect of treatments on productivity & economics of wheat intercropping system

Sale rate of Wheat: Rs.2000/-, Gram: Rs. 6000/-, Lentil: Rs. 5500/- quintal

v. Effect of time of application of *Jeevamrit* on productivity and economics of wheat based cropping system under natural farming conditions

Design: RBD Replication: 3

Seed treatments with *Beejamrit*, basal application of *Ghanjeevamrit* @ 5q/ha and *Jeevamrit* @ 500 l/ha except organic and control.

Treatments: 11

- T_1 Wheat + pea (1:1) + spray of *Jeevamrit* at 14 days interval
- T_2 Wheat + pea (1:1) + spray of *Jeevamrit* at 21 days interval
- T₃ Wheat + pea (1:1) + spray of *Jeevamrit* at 28 days interval

- T_4 Wheat + sarson (1:1) + spray of *Jeevamrit* at 14 days interval
- T_5 Wheat + sarson (1:1) + spray of *Jeevamrit* at 21 days interval
- T_6 Wheat + sarson (1:1) + spray of *Jeevamrit* at 28 days interval
- T₇ Organic package-wheat alone
- T₈ Organic package- Wheat + pea
- T₉ Organic package- Wheat + sarson
- T_{10} Absolute control-with T_1
- T_{11} Absolute control-with T_4

An experiment was conducted at ZBNF farm to study the effect of different treatments on wheat based intercropping system. The results of the study revealed that the treatment T_8 (Organic package -wheat+pea) produced the significantly higher wheat equivalent yield (44.13 q/ha) as compared to the natural farming practices (40.91 q/ha). Similarly, the higher grain yield of wheat (12.77 q/ha) and peas (15.90 q/ha) were also obtained with the organic package, whereas, the natural farming system produced the higher grain yield of sarson (7.21 q/ha) which is at par with the organic package in the wheat+pea+sarson intercropping system. However the natural farming treatment T_1 (Wheat + peas (1:1) + spray of *Jeevamrit* at 14 days interval) was comparatively better in getting the highest gross returns of Rs. 103093 net returns of Rs. 69918 and B:C of 2.11 closely followed by T_8 (Organic package -wheat+pea) as compared to rest of the treatments (Table 13).

Treatment	Yi	Yield (q/ha)		WEQ	Gross	Net	B:C
	Wheat	Peas	Sarson	(q/ha)	returns	return	
					(Rs.)		
T_1 Wheat + pea (1:1) + <i>Jeevamrit</i> at 14 DI	10.92	14.25		40.91	103093	69918	2.11
T_2 Wheat + pea (1:1) + <i>Jeevamrit</i> at 21 DI	9.55	12.07		34.95	87375	54950	1.69
T_3 Wheat + pea (1:1) + <i>Jeevamrit</i> at 28 DI	9.29	10.58		31.56	79783	48108	1.52
T ₄ Wheat +sarson (1:1) + <i>Jeevamrit</i> at 14 DI	9.29		7.21	25.98	65677	34122	1.08
T_5 Wheat +sarson (1:1)+ <i>Jeevamrit</i> at 21 DI	10.03		6.99	26.21	67307	36502	1.18
T_6 Wheat + sarson (1:1) + <i>Jeevamrit</i> at 28 DI	8.55		6.44	23.46	58650	28595	0.95
T ₇ Organic package-wheat alone	12.77			12.77	32078	-10721	-0.25
T ₈ Organic package- wheat + pea	10.66	15.90		44.13	112443	69843	1.64
T ₉ Organic package- wheat + sarson	9.62		7.03	25.89	65449	24469	0.60
T_{10} Absolute control-with T1	6.88	5.55		18.56	48434	25834	1.14
T ₁₁ Absolute control-with T4	6.77		3.03	13.78	34450	13470	0.64
CD at 5%	2.35	2.13	2.7	2.39	-	-	-

Table 13. Effect of treatments on the productivity of wheat based cropping system

Sale rate of Wheat: Rs.2000/-, Peas: Rs. 4000/-, Sarson: Rs. 4400/- quintal

vi. Effect of time of application of *Jeevamrit* on productivity and economics of gram & lentil

Design: RBD Replication: 3

Seed treatments with *Beejamrit*, basal application of *Ghanjeevamrit*@ 5q/ha and *Jeevamrit*@ 500 l/ha except organic and control.

Treatments: 10

- T_1 Gram + spray of *Jeevamrit* at 14 days interval
- T₂ Gram + spray of *Jeevamrit* at 21 days interval
- T₃ Gram + spray of *Jeevamrit* at 28 days interval
- T₄ Lentil + spray of *Jeevamrit* at 14 days interval
- T₅ Lentil + spray of *Jeevamrit* at 21 days interval
- T₆ Lentil + spray of *Jeevamrit* at 28 days interval
- T₇ Organic package-gram
- T₈ Organic package-lentil
- T₉ Absolute control with gram
- T₁₀ Absolute control with lentil

An experiment was conducted to study the effect of different treatments on the productivity of gram and lentil under organic and natural farming system. The results obtained from the study revealed that the natural farming system along with the application of *Jeevamrit* at 14 days interval produced the higher grain yield of gram (0.61 q/ha) than the organic package. Whereas the organic package produced the higher grain yield of lentil (0.39 q/ha) as compared to the natural farming system which are at par with each other (Table 14).

	Yield (q/ha)		Gross	Net return	B:C
Treatment	Gram	Lentil	returns(Rs.)	(Rs.)	
T_1 Gram + <i>Jeevamrit</i> at 14 DI	0.61	-	4204	-28571	-0.87
T ₂ Gram + <i>Jeevamrit</i> at 21 DI	0.48	-	3293	-28732	-0.90
T ₃ Gram + <i>Jeevamrit</i> at 28 DI	0.43	-	2933	-28341	-0.91
T ₄ Lentil + <i>Jeevamrit</i> at 14 DI	-	0.31	1964	-30060	-0.94
T ₅ Lentil + <i>Jeevamrit</i> at 21 DI	-	0.30	1892	-29382	-0.94
T_6 Lentil + <i>Jeevamrit</i> at 28 DI	-	0.25	1537	-28987	-0.95
T ₇ Organic package-gram	0.55	-	3683	-38516	-0.91
T ₈ Organic package-lentil	-	0.39	2416	-39033	-0.94
T ₉ Absolute control with gram	0.33	-	2293	-19906	-0.90
T ₁₀ Absolute control with lentil	-	0.22	1376	-19773	-0.93
CD at 5%	0.223	-	-	-	-

Table 14. Effect of treatments on the productivity of gram and lentil

However, attack of the pod borer in gram declined the crop yield to a higher extent and it could not be managed by the available natural farming practices. Whereas, the heavy hailstorm and some agroclimatic conditions resulted in shattering of the lentil crop during the flowering stage and the yield was decreased (Table 14).

vii. Effect of time of application of *Jeevamrit* on productivity and economics of different varieties of oats under natural farming system

Design: RBD Replication: 3

Seed treatments with *Beejamrit*, basal application of *Ghanjeevamrit* @ 5q/ha and *Jeevamrit* @ 500 l/ha except organic and control treatments.

Treatments: 10

- T₁ Oat (Kent) + spray of *Jeevamrit* at 14 days interval
- T₂ Oat (Kent) + spray of *Jeevamrit* at 21 days interval
- T₃ Oat (Kent) + spray of *Jeevamrit* at 28 days interval
- T₄ Oat (Palampur-1) + spray of *Jeevamrit* at 14 days interval
- T₅ Oat (Palampur-1) + spray of *Jeevamrit* at 21 days interval
- T₆ Oat (Palampur-1) + spray of *Jeevamrit* at 28 days interval
- T₇ Organic package- Oat (Kent)
- T₈ Organic package- Oat (Palampur-1)
- T₉ Absolute control-with Kent
- T₁₀ Absolute control-with Palampur-1

To study the effect of different treatments on the two varieties of oats an experiment was conducted at ZBNF farm during the season. The results reflected that the higher yield of oats in both the varieties was obtained under natural farming system with the treatments T_3 (23.32 q/ha) & T5 (18.14 q/ha) respectively, as compared to the organic package. In addition, the natural farming treatments were observed to be the best in getting the higher gross returns, net return and B:C in both the varieties of oats as compared to the organic package (Table 15).

Treatment	Yield	Gross	Net	B:C
	(q/ha)	returns (Rs)	returns(Rs)	
T1. Oat (Kent)+spray of Jeevamrit at 14 DI	21.85	98704	67829	2.20
T2. Oat (Kent)+spray of <i>Jeevamrit</i> at 21 DI	17.18	77239	47114	1.56
T3. Oat (Kent)+spray of <i>Jeevamrit</i> at 28 DI	23.32	101775	72400	2.46
T4. Oat (Palampur-1)+spray of <i>Jeevamrit</i> at 14 DI	14.62	69115	38240	1.24
T5. Oat (Palampur-1)+spray of <i>Jeevamrit</i> at 21 DI	18.14	81930	51805	1.72
T6. Oat (Palampur-1)+spray of <i>Jeevamrit</i> at 28 DI	15.36	69940	40565	1.38
T7. Organic package-Oat (Kent)	16.10	72174	31874	0.79
T8.Organic package- Oat (Palampur-1)	16.10	72967	32667	0.81
T9. Absolute control-with Kent	7.22	35610	15310	0.75
T10. Absolute control-with Palampur-1	8.51	39376	19076	0.94
CD at 5%	8.271	-	-	-

Table 15. Effect of treatments on the productivity of oats

5.2.3 Varietal Evaluation

i. Evaluation of rice genotypes/varieties for seed yield and its related traits

Fifteen genotypes of rice were evaluated in randomized block design of 9m² plot size with three replications by following all the practices of natural farming conditions. The analysis of variance revealed that all the traits under study had significant variation. The variation for days to maturity ranged from 99.33 to 106.66 days with overall mean of 102.17 days. The genotype Kalighini was observed to be significantly early maturing than that of other genotypes. Plant height ranged from 85.16 to 147.00 cm with a mean value of 104.71 cm. The genotype

HPR 2795 was significantly superior for plant height as compared to others. The extent of variation observed for number of tillers ranged from 6.00 to 8.43 with overall mean of 7.20. The extent of variation observed for seed/panicle trait ranged from 101.03 to 136.06 with a mean value of 119.86. The genotypes HPR 2720, HPR HPR 2143 were superior than that of other genotypes. Seed yield ranged from 12.10 q/ha to 38.16 q/ha with overall mean of 24.26 q/ha. The genotypes HPR 2720 (38.16 q/ha), HPR 1068 (35.16 q/ha) and HPR 1156 (30.56 q/ha) were at par with each other. Among 15 genotypes of paddy evaluated under ZBNF conditions genotypes HPR 2720 followed by HPR 1068 were found to be highest yielder as compared to the other lines (Table 16).

Farm	ling conditions					
Treatment/ Variety	Days to 50% flowering	Days to 75% maturity	Plant Height (cm)	Number of tillers	Seeds/ panicle	Yield (q/ha)
HPR19	68.66	100.66	85.50	8.43	101.03	25.50
HPR 29	69.66	102.66	89.23	8.40	121.23	18.93
HPR1068	71.00	102.33	101.93	7.53	110.33	35.17
HPR 2143	65.00	103.33	95.33	7.66	124.00	24.27
HPR2880	66.00	103.00	96.33	6.8	108.73	27.23
Kalighini	64.00	99.33	125.93	6.06	124.30	21.58
Sattu Dhan	65.00	101.33	110.23	7.96	119.53	25.17
Suila Dhan	67.00	101.66	108.60	6.00	118.10	23.24
HPR 2720	69.66	100.66	116.43	7.96	136.06	38.17
HPR 2795	67.33	102.00	147.00	6.03	127.80	20.53
HPR 2143	64.66	103.66	100.53	6.33	134.00	28.17
PUSA 1509	65.33	102.33	85.16	6.46	121.43	16.47
PUSA 1121	68.00	106.66	95.90	7.83	118.20	20.63
HPR 1156	64.66	100.66	122.76	6.6	117.30	30.57
HPR 2612	67.33	102.33	89.86	7.93	115.96	15.83
G.M.	66.88	102.17	104.71	7.20	119.86	24.76
CD at 5%	0.81	0.89	3.50	0.65	1.99	1.64

 Table 16. Evaluation of rice genotypes for seed yield and its related traits under Natural Farming conditions

ii. Evaluation of Finger millet genotypes with respect to different traits under Natural Farming conditions

Five genotypes of finger millet were evaluated in randomized block design of 3.6m² plot size with 4 replications following all the practices of Natural Farming conditions. The analysis revealed that all the traits of finger millet under study had significant variation. The variation for days to maturity ranged from 148.50 to 153.75 days with overall mean of 150.3 days. The genotypes VL 347 was observed to be significantly early maturing than that of other genotypes. The extent of variation observed for plant height ranged from 100.50 to 112.50 with overall mean of 106.65 cm. The genotype VL 149 was observed to be significantly superior as compared to others. Number of spikelets ranged from 6.20 to 7.67 with a mean value of 7.00. Among these 5 genotypes VL 149 followed by VL 352 were at par with each other as compared

to other genotypes. Seed yield ranged from 8.27 q/ha to 15.43 q/ha with overall mean of 11.94 q/ha. The genotypes VL 324 (15.43 q/ha) and VL 149 (15.07 q/ha) were significantly superior than that of other genotypes. Among all these 5 genotypes of finger millet evaluated under ZBNF conditions genotype VL 324 followed by VL 149 was found to be highest yielder as compared to the other (Table 17).

Treatment/	Days to 50%	Days to 75%	Plant	Number of	Yield
Variety	flowering	maturity	Height (cm)	spikelets	(q/ha)
VL 315	109.5	149.0	106.0	7.02	8.27
VL 352	106.2	153.7	107.0	7.17	10.25
VL 149	107.0	150.0	112.5	7.67	15.07
VL 347	101.5	148.5	100.5	6.20	10.70
VL 324	106.7	150.2	107.2	6.95	15.43
G.M.	106.2	150.3	106.6	7.00	11.94
CD at 5%	0.84	1.70	0.96	0.48	0.50

 Table 17. Evaluation of finger millet genotypes for seed yield and its related traits under Natural Farming conditions

iii. Maize

Two local collections of maize germplasm *viz*. Sainj-local and Jwalapur-local were procured from Kullu and grown under ZBNF conditions. Self seeds were procured from these two varieties and will be evaluated during next *Kharif* season for further evaluation and multiplication. Among these two local varieties of maize, Sainj Local had plant height, number of plants/m, number of leaves or cobs/plant were higher than that of Jwalapur Local. The variety Sainj local was found to be significantly highest yielder and superior than that of Jwalapur local (Table 18).

Traits	Sainj local	Jwalapur local
Plant height cm	214.0	191.6
Number of plants/m	6.2	5.8
Number of leaves/plant	13.5	13.0
Plant diameter	3.0	3.0
Number of cobs/plant	2.0	1.6
Cobs procured	25	25

 Table 18. Evaluation of maize genotypes under natural farming conditions

iv. Wheat

Eighteen genotypes of wheat were evaluated in randomized block design of $3m^2$ plot size with three replications by following all the practices of SPNF conditions. The analysis of variance revealed that all the traits under study had significant variation. The genotypes HPWO-5 (17.83 q/ha) MCTLH-21 (16.66 q/ha), Kanku (16.51 q/ha) were significantly superior to that of other genotypes (Table 19).

condition	3			
Treatment/	Days to 50%	Days to 75%	Plant height	Yield
Variety	flowering	maturity	(cm)	(q/ha)
HPWO-4	121.66	161.66	77.73	13.06
MCTLH-21	125	158.33	94.13	16.66
MCTLH-25	116.66	156.66	85.6	11.79
KANKU	111.66	154.66	98.16	16.51
HPWO-5	106.66	155	72.73	17.83
HPW-249	121.66	153.66	82.3	12.00
MCTLH-19	115	160	82.13	9.83
MCTLH-23	120.66	154.33	78.83	11.72
MCTLH-24	115	159.66	78.96	11.45
HPW-349	116.66	158.33	87.13	13.31
MCTLH-28	121.66	164.66	80.16	13.79
MCTLH-26	106.66	160	81.16	14.03
MCTLH-27	103.33	159	78.16	14.14
MCTLH-29	107.66	157.66	77.7	10.86
MCTLH-6	120	171.66	87.8	8.75
MCTLH-22	103.33	160	91.73	14.75
HPW-155	108.33	157.66	85.66	10.75
HPW-368	121.66	160.66	79.66	13.75
G.M.	114.63	159.09	83.32	13.05
CD at 5%	7.29	7.78	4.04	0.31

Table 19. Evaluation of wheat genotypes for seed yield and its related traits under SPNF conditions

v. Barley

A set of 9 varieties of barley were evaluated in randomized block design of $5.0m^2$ plot size with 3 replications following all the practices of SPNF conditions. The analysis of variance revealed that all the traits of barley under study had significant variation. The top yielder was BHS-352 (16.04 q/ha), followed by the entries BHS-400 (14.58 q/ha) and VLB-118 (13.32 q/ha) which were at par with each other (Table 20).

 Table 20. Evaluation of barley varieties for seed yield and its related traits under SPNF conditions

Treatment/	Days to 50%	Days to 75%	Plant height (cm)	Yield
Variety	flowering	maturity		(q/ha)
HBL-316	108.3	151.66	67.73	8.66
HBL-713	111.7	145	84.13	11.27
VLB-118	120	147.66	75.6	13.32
BHS-352	101.7	156.66	88.16	16.04
HBL-113	105	146.66	62.73	12.26
BHS-400	107	156.66	72.3	14.58
HBL-804	108.3	150	72.13	12.83
HBL-276	115	148.66	73.83	10.18
BHS-380	113.7	145	75.96	10.9
Grand mean	110.07	149.77	74.73	12.23
CD at 5%	8.86	8.66	3.56	2.17

vi. Lentil

Fifteen genotypes of lentil were evaluated in randomized block design of $3.6m^2$ plot size with three replications by following all the practices of SPNF conditions. The analysis of variance for 15 genotypes of lentil revealed that all the traits under study had significant variation. The genotypes HPLO-3 (7.90 q/ha) followed by DKL-13-3 (7.86 q/ha) and DKL-13-6 (7.73 q/ha) were superior to that of other genotypes (Table 21).

Treatment/ Variety	Days to 50% flowering	Days to75% maturity	Plant height (cm)	Number of branches	Yield (q/ha)
VIPASHA	110.00	153.33	36.94	29.46	6.24
DKL-59	111.66	148.33	34.44	28.18	7.34
HPLO-3	112.33	148.33	32.41	26.24	7.90
DKL-13-6	102.66	145.00	38.62	33.81	7.73
DKL-13-2	101.66	148.33	39.67	34.31	7.41
DKL-13-3	104.00	150.00	33.11	26.94	7.86
DKL-57	96.66	148.33	38.89	29.38	6.79
DKL-13-1	102.00	151.33	36.39	27.39	6.38
MARKANDEY	108.33	148.33	36.78	27.81	5.38
HPLO-1	108.33	155.00	32.99	27.32	6.85
DKL-13-4	101.66	141.66	42.73	30.24	7.11
DKL-50	98.33	140.00	36.24	29.87	6.46
HPLO-2	111.66	155.00	33.15	26.91	6.14
DKL-37	101.66	153.33	40.17	31.92	6.23
DKL-61	106.66	153.33	37.29	28.98	5.58
Grand mean	105.17	149.31	36.65	29.25	6.75
CD at 5%	6.60	8.07	5.50	4.94	1.02

 Table 21. Evaluation of lentil genotypes for seed yield and its related traits under SPNF conditions

5.2.4 Microbial evaluation in cow dung and urine

Work done/ target achieved

- 189 faecal samples were collected per-rectal from indigenous breeds of cows, pahari cows, cross bred cows, exotic cows, buffalo and churu for Total Viable count(TVC) and counts of nitrogen fixing bacteria from organized farms, goushalas and farmers field (Table 23)
- Samples were collected from 4 agroclimatic zones comprising 9 distrcts and 54 different places (Table 22).

Agro climatic zones	District	Breed wise number of sample collection (No.)	Location (No.)				
Sub- mountains low hills sub- tropical (Zone-I)	Kangra, Sirmour, Hamirpur, Mandi	Indigenous breed = 24 (Sahiwal, Rathi, Gir, Red Sindhi) Pahari = 8 Cross bred =6 (Desi x Jersey) Buffalo = 8 Exotic=5	Ganoh (3), Bholiyan (1), Mazra (1), Dhaulakuan (1), Nurpur (3) Thakudwara Goushala Jamli (1), Vinod Memorial Goushala Samona, Sujanpur (1), Suan (2), Ranital (1), Dohb (1). Hatli (1), Shiholpuri (1) and Jangal (1)				
Mid-hills sub-humid (Zone-II)	Kangra, Mandi	Exotic = 10 (Jersey / HF) Pahari= 18 Indigenous breed = 12 (Sahiwal.Red Sindhi) Cross Bred =12 (Desi x Jersey) Buffalo (8)	CSKHPKV Farm (2) Goushala Kangehan Jaisinghpur (1) Goushala Saliyana Panchrukhi (1), KVK Kangra (1), Chambi (1), Navriti Dhanotu (1), kvk SunderNagar (1), Megal (1), Tatail (1), Mohini Goushala Nori (1), Jandpur (1), Trehal (1), Tharu (1), Kamathu (1)				
High hills sub temperate wet (Zone- III)	Kullu, Solan, Mandi, Shimla	Pahari = 16 Indigenous breed = 14 (Red Sindhi/ Sahiwal/Kankrej) Exotic = 7 (Jersey / HF) Cross Bred = 13 (Desi x Jersey)	KVK Bajaura (1), Sainj (1) Pharmacist training college Goushala solan UHF, Nauni (1), Subathu Ashram Goushala (1), Baila (Janjehli panchayat (1), Chapar (Road Panchayat) (1), Thach (Balidhar panchayat) (1), Tandi (Murag panchayat) (1), Kyodinaal (Dhimkataru panchayat) (1), Gadhdhar Bara panchayat (1), Deodhar Bara panchayat (1), Swandi bara panchayat (1), Vill Shah Panchayat Sanarsa (1), Hare Krishna Gouhala Rampur (1), Vill Dofda(1)				
High hills temperate dry (Zone- IV)	Lahaul & Spiti, Kinnaur	Churi = 4 Pahari = 9 Cross Bred = 15 (Desi x Jersey)	Sagnam (1), Kibber (1), Losar (1), Kaza (1), Kesori (1), Hinsa (1) Udaipur, Jangla (1), Salgran (1), Pooh (1), Nako (1), Tabo (1)				

 Table 22. Samples collected from different agro climatic zones from various breed/species of animals

Zone wise sampling details

Zone-1

Number of districts covered under study (n=4): Kangra, Sirmour, Hamirpur, Mandi

Sample collecting location (n=12): Nurpur, Ganoh, Suan, Ranital, Dohb, Hatli, Shiholpuri, Jangal, Bholiyan, Mazra, Dhaulakuan, Thakudwara Goushala Jamli , Vinod Memorial Goushala Samona, Sujanpur

Zone-2

Number of districts covered under study (n=2):Kangra, Mandi.

Sample collecting location (n=13):CSKHPKV Livestock Farm and ZBNF FarmPalampur, KVK Kangra, Chambi, Navriti Dhanotu, Goushala Kangehan Jaisinghpur, Goushala Saliyana Panchrukhi, Tatail, Mohini Goushala Nori, Jandpur, Trehal, Tharu, Kamathu KVK Sunder Nagar, Goushala Megal.

Zone-3

Number of districts covered under study (n=4): Kullu, Solan, Mandi, Shimla

Sample collecting location (n=17): Katani Ashram, Shubathu ; Kalyani Pahari Cow Anusandhan Kendra, Khalnag, Arki; Dairy Farm, UHF Solan;Goushala, Veterinary Pharmacists Training Institute, Jaunaji Rd, Nauni, Solan.Kullu- KVK livestock Farm, Bajaura and Vill. Shalwar Sainj, Baila (Janjehli panchayat), Chapar (Road panchayat), Thach (Balidhar panchayat), Tandi (Muran panchayat) Kyodinaal (Dhimkataru panchayat), Gadhdhar, Deodhar, Swandi (Bara panchayat),

Vill Shah Panchayat Sanarsa, Hare Krishna Goushala Rampur & Vill Dofda.

Zone-4

Number of districts covered under study (n=2): Lahaul & Spiti and Kinnaur

Sample collecting location (n=12):Village Kibber & Sagnam, Kaza, Lossar, Kesori, Hinsa, Udaipur, Vill Jangla, Salgran, Pooh, Nako, Tapri, Tabo.

Sr. No.	Breed/species	No.
1	Pahari	51
2	Indigenous (Sahiwal, Rathi, Red	50
	Sindhi, Kankrej, Haryana, Gir)	
3	Cross bred	46
4	Exotic (Jersey, Holstein Friesian)	22
5	Churi	4
6	Buffalo	16
	Total	189

Table 23. Different breeds of animals investigated during the study

Sample collection from native cattle's of Himachal Pradesh

Pooh, Kinnaur

Nako, Kinnaur

Trehal, Kangra

Taboo, Lahaul & Spiti

Chapar, Janjehli, Mandi

Tandi, Thunag, Mandi

Navriti, Goushala Dhanotu, Kangra

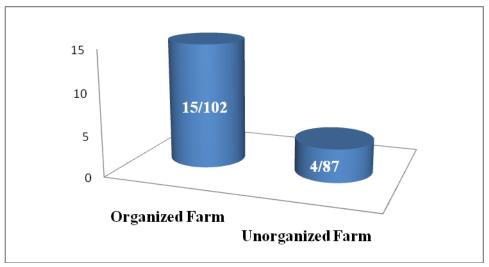
Gaushala Jamli, Hamirpur

 Table 24. Zone wise total viable counts and nitrogen fixing bacteria counts of faecal samples in cattle, buffalo and Churu

Zone –I	No. of animals	TVC/gm of feces at 35° C±2	Nitrogen fixing 28º C±2
Indigenous breed	24	0.027->300 crores	0.0069->300 crores
Pahari	8	0.125-35.5crore	0.046-18.2 crore
Cross Bred	6	0.04- 75.0 crore	0.29-23.8 crore
Buffalo	8	0.047-226.5crores	0.024-22.5 crores
Exotic	5	0.047- 66.0crores	1.12-22.0 crores
Zone –II	No. of animals	TVC/gm of feces at 35° C±2	Nitrogen fixing 28º C±2
Indigenous breed	12	0.075->300 crores	0.0001-80 crores
Pahari	18	0.019->300 crore	0.00031-24.8 crores
Cross Bred	12	0.065->300 crore	1.71-26.3 crore
Buffalo	8	0.027-58.0 crores	0.72-22.3 crores
Exotic	10	0.018->300 crore	0.01->300 crore
Zone –III	No. of animals	TVC/gm of feces at 35 ^o C±2	Nitrogen fixing 28 ⁰ C±2
Indigenous breed	14	0.050-86.5 crore	0.00039-183 crore
Pahari	16	0.043->300crore	0.000039-81 crore
Cross Bred	13	0.39->300 crore	1.35-28.8 crore
Exotic	7	0.139 - 48.5crore	0.00015-211.0crore
Zone –IV	No. of animals	TVC/gm of feces at 35° C±2	Nitrogen fixing 28 ⁰ C±2
Churu	4	0.006-50 crore	0.0029 – 7.7 crore
Pahari	9	0.31 - > 300 crore	2.28 – 26.3 crore
Cross Bred	15	0.565 - >300 crore	1.6 – 241.0 crore

 Table 25. Total bacterial counts and nitrogen fixing bacteria counts of faecal samples collected from animals reared under agro climatic zones of Himachal Pradesh

Breed /	Zone I		Zone II		Zone III		Zone IV	
Species of animal	Total Viable Count (crores)	Nitrogen Fixing (crores)	Total Viable Count (crores)	Nitrogen Fixing (crores)	Total Viable Count (crores)	Nitrogen Fixing (crores)	Total Viable Count (crores)	Nitrogen Fixing (crores)
Pahari	0.125 - 35.5	0.046 - 18.2	0.019 - >300	0.00031– 24.8	0.043 - >300	0.000039– 258.0	0.31 - >300	2.28 – 26.3 –
Indigenous	0.027 - >300	0.0069 - >300	0.075 - >300	0.0001– 80.0	0.050 – 86.5	0.00039– 183	Nil	Nil
Cross Bred	0.04 - 75.0	1.71 – 26.3 –	0.065 - >300	1.71 – 26.3 –	0.39 - >300 -	1.35 – 28.08 –	0.565- >300	1.6 – 241.0 –
Exotic	0.047 – 66.0	1.12 - 22.0	0.018 - > 300	0.01 - >300	0.139 – 48.5	0.00015 – 211.0	Nil	Nil
Buffalo	0.047 – 226.5	0.024 – 22.5	0.027 – 58	0.72 – 22.3 –	Nil	Nil	Nil	Nil
Churu	Nil	Nil	Nil	Nil	Nil	Nil	0.006 – 50	0.0029 – 7.7


 Table 26. Comparison of Total Viable Counts and Nitrogen fixing bacteria in Organized and Unorganized animal management system in different agro-climatic zones

Zones	Organize	d (Dairy/Stall F	'ed)	Unorganized (Stall Fed/Open Grazing)			
	No. of	TVC	NF	No. of	TVC	NF	
	sample			sample			
Zone – I	27	0.3 ->300	0.032 - >300	24	0.027 - 75	0.0069 - 102	
Zone – II	42	0.019 ->300	0.0001 ->300	18	0.027 - 58	0.72 - 24.7	
Zone – III	33	0.050 - >300	0.00015 - 258	17	0.62 ->300	0.000039 - 211	
Zone – IV	-	-	-	28	0.006 - >300	0.0029-241	

 Table 27. Zone-wise distribution of animals with Total Viable counts more than 300 crores per gm of dung sample

Zone	Breed	Number	Location	Animal Husbandry practice
	Rathi	01	Ganoh, Kangra	Gaushala
Zone I	Red Sindhi	01	KVK, Dhaula Kuan	Organized farm
	Sahiwal	01	KVK, Dhaula Kuan	Organized farm
	Holstein Frisian	01	CSK HPKV	Organized farm
	Pahari	02	CSK HPKV	Organized farm
Zone II	Sahiwal	01	CSK HPKV	Organized farm
Zone II	Pahari	01	KVK, Sunder Nagar	Organized farm
	Jersey	02 KVK, Kan		Organized farm
	Red Sindhi	01	KVK, Kangra	Organized farm

			Nauri, Kangra	Gaushala
			Nauri, Kangra	Gaushala
	Crossbred	02	Chapra & Baila, Janjehli, Mandi	Unorganized dairy farmer
Zone III Cr	Crossbred	01 KVK Baijura		Organized Farm
	Pahari	01	Hare Krishna Goushala	Organized Farm
7	Crossbred	01	Kibber, Lahual & Spiti	Unorganized Dairy farmer
Zone IV	Pahari	01	Sagnam, Lahual & Spiti	Unorganized Dairy farmer

Total Viable Counts more than 300 crores in dung samples of different breeds of cows in Organized and Unorganized Farm

Results

- 1. Total viable counts (TVC) of 10% (19/189) animals were more than 300 crores cfu/gm. This included cattle of
 - a. Indigenous breeds 12.00% (n=6/50)
 - b. Pahari 9.43% (n=5/53)
 - c. Crossbred 10.86% (n=5/46)
 - d. Exotic breed 13.63% (n=3/22)
- 2. TVC > 300 crores cfu/gm were non-significantly associated with all the breeds of the cattle.
- 3. None of the churu or buffalo dung samples had TVC \ge 300 crores cfu/gm.
- 4. Highest TVC counts for buffalo and churu were 226 and 50 crores cfu/gm, respectively.
- 5. Nitrogen fixing bacteria counts >300 crores cfu/gm were recorded in indigenous and exotic breeds of cattle.
- 6. Highest nitrogen fixing bacteria counts for Churu and Buffalo were 7.7 crores and 22.5crores cfu/gm respectively.

5.2.5 Soil Microbiological Studies

i. To study the effects of SPNF inputs on productivity and economics of paddy

Varieties: HPR-1068 and HPR-2880 Design: RBD Replication: 3

Treatments: 10

- T₁ Paddy (Var.1) + spray of Jeevamrit at 14 days interval
- T₂ Paddy (Var.1) + spray of Jeevamrit at 21 days interval
- T₃ Paddy (Var.1) + spray of Jeevamrit at 28 days interval
- T₄ Paddy (Var.2) + spray of Jeevamrit at 14 days interval
- T₅ Paddy (Var.2) + spray of Jeevamrit at 21 days interval
- T₆ Paddy (Var.2) + spray of Jeevamrit at 28 days interval
- T₇ Organic package (Var.1)
- T₈ Organic package (Var.2)
- T₉ Absolute control (Var.1)
- T_{10} Absolute control (Var.2)

The soil pH was in the range of 4.97 to 5.94 and EC was in the range of 0.09- 0.1. The soil chemical properties (percent organic carbon, microbial biomass carbon & available N) and microbiological properties (general bacterial count, phosphate solubilizing bacterial count and nitrogen fixing bacterial count) were recorded highest in treatment T_4 Paddy (Var.2) + spray of jeevamrit at 14 days interval. In case of available P & K and actinomycetes count treatment T_1 Paddy (Var.1) + spray of jeevamrit at 14 days interval showed highest results while in case of fungal count highest count was recorded in treatment T_7 {Organic package (Var.1)}. Dehydrogenase activity was highest in T_8 treatment {Organic package (Var.2)} (Table 28 & 29).

Treatment	%OC	Microbial	Dehydrogenase	Available	Available	Available	pН	EC
		biomass	Activity (µg	N (Kg/ha)	P (Kg/ha)	K (Kg/ha)		
		Carbon	TPFg-1 soil hr-1)					
T_1	0.81	85.77	4.95	224	32.58	137	5.18	0.10
T_2	0.78	81.50	4.94	212	31.37	130	5.06	0.09
T ₃	0.77	76.86	4.90	208	29.54	129	5.05	0.09
T_4	0.83	86.22	4.94	225	31.24	131	5.94	0.09
T ₅	0.79	78.51	4.88	210	30.86	128	5.04	0.09
T ₆	0.78	77.83	4.89	209	29.55	127	5.01	0.09
T ₇	0.80	85.52	4.95	212	29.10	132	5.02	0.09
T ₈	0.82	83.10	4.96	215	28.98	131	5.02	0.09
T 9	0.68	72.22	3.90	200	23.34	114	4.97	0.09
T ₁₀	0.68	72.04	3.92	199	23.31	114	5.03	0.09
CD at 5%	0.02	3.33	0.01	2.85	0.83	3.22	0.11	0.01

Table 28. Effect of treatments on the soil parameters at harvest of paddy

Treatment	Nutrient	Phosphate Solubilizing	Actinomycetes	Fungus	Nitrogen fixing
	Agar ×10 ⁴	bacteria ×10 ⁴ cfux10 ⁴	×10 ⁴	×10 ²	bacteria ×10 ⁴
T_1	12.0	7.7	8.4	4	8.5
T ₂	6.8	4.8	5.9	3	5.6
T ₃	6.4	5.0	4.9	3	5.0
T ₄	12.3	7.9	7.3	5	8.8
T ₅	7.4	6.1	5.6	5	6.7
T ₆	7.8	5.6	5.6	2	4.5
T ₇	10.7	4.3	4.5	6	5.0
T ₈	9.3	5.1	7.5	5	3.9
T 9	7.0	3.6	4.0	2	3.4
T ₁₀	6.3	3.4	5.1	2	3.4
CD at 5%	0.32	0.25	0.20	0.86	0.21

Table 29. Effect of treatments on the microbial count at harvest of paddy

ii. To study the effect of SPNF inputs on productivity and economics of maize intercropping system

Varieties: Bajaura Makka Lobia-Him Lobia-I Design: RBD Replication: 3

Treatments: 13

- T_1 Maize + lobia + spray of jeevamrit at 14 days interval
- T₂ Maize + lobia + spray of jeevamrit at 21 days of interval
- T₃ Maize + lobia + spray of jeevamrit at 28 days of interval)
- T₄ Maize + soybean + spray of jeevamrit at 14 days of interval
- T₅ Maize + soybean + spray of jeevamrit at 21 days of interval
- T_6 Maize + soybean + spray of jeevamrit at 28 days of interval
- T₇ Maize + spray of jeevamrit at 14 days of interval
- T₈ Maize + spray of jeevamrit at 21 days of interval
- T₉ Maize + spray of jeevamrit at 28 days of interval
- T₁₀ Organic package- Maize + soybean
- T₁₁ Absolute control (Maize)
- T₁₂ Organic package- maize + lobia
- T₁₃ Maize sole (organic)

The soil pH was in the range of 4.73 to 5.44 and EC was in the range of 0.11- 0.13. The soil chemical properties (percent organic carbon, dehydrogenase activity, microbial biomass carbon, available N & P) and microbiological properties (general bacterial count, phosphate solubilizing bacterial count, actinomycetes count, fungus count and nitrogen fixing bacterial count) were recorded highest in treatment T_1 Maize + lobia + spray of jeevamrit at 14 days interval. In case of available K treatment T_4 Maize + soybean + spray of jeevamrit at 14 days of interval showed highest results (Table 30).

Treatment	%OC	Microbial	Dehydrogenase	Available	Available	Available	pН	EC
		Biomass	activity (µg TPFg	N (Kg/ha)	P (Kg/ha)	K (Kg/ha)		
		Carbon	1 soil hr-1)					
T_1	0.81	86.56	4.91	255	29.32	135	5.12	0.12
T ₂	0.72	81.36	4.81	243	28.54	131	5.18	0.13
T ₃	0.71	78.55	4.76	242	28.33	131	4.73	0.13
T_4	0.76	82.56	4.88	254	28.86	136	5.34	0.11
T ₅	0.71	81.70	4.78	246	28.76	131	5.31	0.12
T ₆	0.71	72.53	4.75	233	28.63	129	5.24	0.12
T ₇	0.75	80.33	4.82	238	27.82	128	5.24	0.11
T ₈	0.70	72.60	4.77	232	27.61	126	5.31	0.12
T9	0.68	71.50	4.77	231	27.18	126	5.16	0.12
T ₁₀	0.87	81.10	4.85	254	28.34	127	5.30	0.12
T ₁₁	0.83	84.36	4.82	199	28.89	128	5.42	0.12
T ₁₂	0.85	86.31	4.81	235	28.54	131	5.19	0.12
T ₁₃	0.68	66.60	4.76	225	29.30	135	5.44	0.13
CD at 5%	0.02	0.55	0.07	2.70	1.30	3.60	0.28	0.01

Table 30. Effect of treatments on the soil parameters at harvest of maize

Table 31. Effect of treatments on the microbial count at harvest of maize

Treatment	Nutrient	Phosphate	Actinomycetes	Fungus	Nitrogen fixing
	Agar ×10 ⁴	Solubilizers ×10 ⁴	$\times 10^4$	×10 ²	bacteria ×10 ³
T_1	27.1	16.9	19.5	7.6	12.8
T ₂	25.8	12.0	15.8	5	8.7
T ₃	21.5	11.7	14.4	5	8.9
T_4	22.4	13.7	19.1	5	12.9
T ₅	20.5	11.1	16.2	5	11.0
T ₆	17.8	12.0	15.9	4	11.3
T ₇	19.6	10.6	12.4	6	7.4
T ₈	17.6	9.5	9.9	6	9.7
T ₉	16.1	7.9	8.4	4	7.8
T ₁₀	20.2	16.2	19.3	4	12.7
T ₁₁	12.0	9.4	6.3	5	9.8
T ₁₂	19.9	12.0	16.1	3	11.2
T ₁₃	20.8	16.3	15.0	3	10.8
CD at 5%	0.24	0.22	0.20	0.74	0.02

iii. To study the effect of S.P.N.F. inputs on productivity and economics of fingermillet

Varieties: Finger millet (local) Design: RBD Replication: 3

Treatments: 10

- T₁ Fingermillet+soybean (broadcasting) + spray of jeevamrit at 14 days interval
- T₂ Fingermillet+soybean (broadcasting) + spray of jeevamrit at 21 days interval
- T₃ Fingermillet+soybean (broadcasting) + spray of jeevamrit at 28 days interval
- T₄ Fingermillet+soybean (line sowing) + spray of jeevamrit at 14 days interval

- T₅ Fingermillet+soybean (line sowing) + spray of jeevamrit at 21 days interval
- T₆ Fingermillet+soybean (line sowing) + spray of jeevamrit at 28 days interval
- T₇ Fingermillet+soybean (broadcasting) + Organic package
- T₈ Fingermillet+soybean (line sowing) + Organic package
- T₉ Fingermillet+soybean (broadcasting) + Absolute control
- T₁₀ Fingermillet+soybean (line sowing) + Absolute control

Table 32. Effect of treatments on the soil parameters at harvest of fingermillet

Treatment	%OC	Microbial		Available	Available D (V = /h =)	Available	pН	EC
		Biomass Carbon	activity (µg TPFg-1	N (Kg/ha)	P (Kg/ha)	K (Kg/ha)		
			soil hr-1)					
T ₁	0.87	84.97	4.77	239	29.60	128	5.21	0.10
T ₂	0.82	79.19	4.70	227	29.35	128	5.18	0.1
T ₃	0.80	78.04	4.64	223	29.27	126	5.19	0.11
T ₄	0.84	82.80	4.69	234	30.47	127	5.06	0.11
T ₅	0.81	78.35	4.68	231	30.37	125	5.21	0.13
T ₆	0.81	78.33	4.63	225	30.17	125	5.24	0.13
T ₇	0.83	81.89	4.69	235	30.42	127	5.27	0.11
T ₈	0.85	81.92	4.68	233	30.03	124	5.29	0.09
T ₉	0.78	73.70	4.64	218	27.65	118	5.24	0.10
T ₁₀	0.77	72.96	4.60	214	27.08	118	5.02	0.10
CD at 5%	0.02	1.63	0.03	0.78	0.89	0.53	0.07	0.009

 Table 33. Effect of treatments on the microbial count at harvest of fingermillet

Treatment	Nutrient Agar ×10 ⁴	Phosphate Solubilizing bacteria ×10 ⁴	Actinomycetes ×10 ⁴	Fungus ×10 ²	Nitrogen fixing bacteria ×10 ⁴
T ₁	25.3	6.3	5.3	4	5.0
T ₂	24.1	6.0	4.8	3	3.8
T ₃	15.0	4.6	4.0	2	3.6
T ₄	19.7	5.7	4.5	8	4.8
T ₅	19.4	5.0	3.8	3	4.0
T ₆	16.4	4.0	3.6	3	3.8
T ₇	25.7	9.6	8.3	3	5.3
T ₈	24.0	8.5	7.3	5	3.2
T9	8.3	2.8	4.3	4	4.2
T ₁₀	5.9	3.6	3.4	4	3.5
CD at 5%	0.26	0.23	0.19	0.1	0.21

The soil pH was in the range of 5.02 to 5.29 and EC was in the range of 0.09-0.13. The soil chemical properties (percent organic carbon, dehydrogenase activity, microbial biomass carbon, available P & K) were recorded highest in treatment T_1 Fingermillet+soybean (broadcasting) + spray of jeevamrit at 14 days interval and microbiological properties (general bacterial count, phosphate solubilizing bacterial count, actinomycetes count and nitrogen fixing bacterial count) were recorded highest in treatment T_7 Fingermillet + soybean (broadcasting) +

Organic package Maize + lobia + spray of jeevamrit at 14 days interval. Available P and Fungus count was recorded highest in treatment T_4 Fingermillet + soybean (line sowing) + spray of jeevamrit at 14 days interval.

iv. To study the effects and time of application of *jeevamrit* on productivity and economics of wheat cropping systems

Design-RBD Replication-3

Treatments: 13

T_1	Wheat+gram (1:1)+ <i>Jeevamrit</i> at 14 DI
T_2	Wheat+gram (1:1)+ <i>Jeevamrit</i> at 21 DI
T ₃	Wheat+gram (1:1)+ <i>Jeevamrit</i> at 28 DI
T_4	Wheat+lentil (1:1)+ <i>Jeevamrit</i> at 14 DI
T_5	Wheat+lentil (1:1)+ <i>Jeevamrit</i> at 21 DI
T_6	Wheat+lentil (1:1)+ <i>Jeevamrit</i> at 28 DI
T_7	Wheat (sole crop) + <i>Jeevamrit</i> at 14 DI
T_8	Wheat (sole crop)+ <i>Jeevamrit</i> at 21 DI
T9	Wheat (sole crop)+Jeevamrit at 28 DI
T ₁₀	Organic package- Wheat alone
T ₁₁	Organic package- Wheat + gram
T ₁₂	Organic package- Wheat + lentil
T ₁₃	Absolute control (Wheat + gram)

The data presented in table 34 and 35 shows the data on %OC, microbial biomass carbon, dehydrogenase activity, available N, P, K, soil pH, EC and microbiological properties recorded after the harvest during 2021-2022. The soil pH was in the range of 5.07- 5.46 and EC was in the range of 0.090- 0.098.

Treatment	%	Microbial	Dehydrogenase	Available	Available	Available	pН	EC
	OC	biomass	Activity (µg	N (Kg/ha)	P (Kg/ha)	K (Kg/ha)	-	
		Carbon µg/gm	TPFg-1 soil hr-1)			_		
T_1	0.72	84.37	4.90	262	25.01	211.07	5.14	0.097
T ₂	0.68	77.64	4.77	258	23.14	206.58	5.22	0.093
T ₃	0.59	76.61	4.77	255	22.77	215.56	5.07	0.092
T_4	0.66	81.27	4.87	266	25.01	220.80	5.36	0.094
T ₅	0.65	79.20	4.80	256	24.47	206.58	5.33	0.093
T ₆	0.65	76.61	4.73	250	24.26	208.83	5.26	0.090
T ₇	0.64	75.57	4.83	263	25.76	202.09	5.28	0.094
T_8	0.66	78.16	4.78	256	23.52	215.56	5.33	0.092
T9	0.70	82.30	4.76	251	23.14	209.58	5.18	0.090
T ₁₀	0.68	81.78	4.84	264	25.76	218.56	5.32	0.098
T ₁₁	0.73	81.27	4.86	261	25.38	208.08	5.44	0.095
T ₁₂	0.74	80.75	4.87	257	23.14	208.08	5.21	0.097
T ₁₃	0.61	71.43	4.59	228	23.52	208.83	5.46	0.090
CD at 5%	0.02	NS	0.07	5.89	1.10	5.93	NS	NS

 Table 34. Estimation of soil (0-15) parameters in wheat cropping systems

The soil chemical properties *i.e.* microbial biomass carbon, dehydrogenase activity and microbiological properties (general bacterial count, phosphate solubilizing bacterial count and fungus count) were recorded highest in treatment T_1 (Wheat+ Gram+ spray of jeevamrit at 14 days interval). In case of, available N & K, actinomycetes count and nitrogen fixing bacterial count, treatment T_4 (Wheat+ Lentil+ Spray of jeevamrit at 14 days interval) showed highest results while % OC and available P were highest in organic package (Table 34 & 35).

Treatment	Nutrient Agar ×10 ⁴	Phosphate Solubilizing bacteria ×10 ³	Actinomycetes ×10 ³	Fungus ×10 ²	Nitrogen fixing bacteria ×10 ³
T ₁	24.7	13.9	14.1	3	11.1
T ₂	24.2	11.1	11.6	2	8.0
T ₃	19.7	10.7	11.0	2	7.6
T ₄	21.1	11.3	14.7	2	12.4
T ₅	18.6	9.5	12.6	1	11.0
T ₆	11.3	8.7	10.9	2	11.2
T ₇	17.8	10.0	10.5	1	9.2
T ₈	16.2	9.6	10.6	2	8.6
T9	12.1	8.5	9.7	1	8.1
T ₁₀	18.8	10.2	12.3	2	8.6
T ₁₁	17.6	11.3	12.8	2	9.0
T ₁₂	17.7	10.6	12.5	1	9.1
T ₁₃	7.1	5.5	6.5	1	4.1
CD at 5%	2.1	1.93	NS	0.98	1.03

Table 35. Effect of treatments on the microbial count in wheat cropping systems

v. To study the effects and time of application of jeevamrit on productivity and economics of gram and lentil

Replication-3

Crop- Gram (18-2) Lentil (HPLO-3) Design- RBD

Treatments:10

- T₁ Gram + spray of *Jeevamrit* at 14 days interval
- T₂ Gram + spray of *Jeevamrit* at 21 days interval
- T₃ Gram + spray of *Jeevamrit* at 28 days interval
- T₄ Lentil + spray of *Jeevamrit* at 14 days interval
- T₅ Lentil + spray of *Jeevamrit* at 21 days interval
- T₆ Lentil + spray of *Jeevamrit* at 28 days interval
- T₇ Organic package-gram
- T₈ Organic package-lentil
- T₉ Absolute control with gram
- T₁₀ Absolute control with lentil

The data presented in table 36 and 37 showed the data on %OC, microbial biomass carbon, dehydrogenase activity, available N, P, K, soil pH, EC and microbiological properties. The soil pH was in the range of 4.36- 4.80 and EC was in the range of 0.068- 0.095. (Table 36)

Treatment	% OC	Microbial biomass carbon (µg/gm)	Dehydrogenase Activity (µg TPFg-1 soil hr-1)	N (Kg/ha)	Available P (Kg/ha)	Available K (Kg/ha)	T .	EC
T ₁	0.74	93.70	4.82	261.14	45.54	183.66	4.53	0.084
T ₂	0.63	92.07	4.51	252.61	28.74	139.33	4.54	0.075
T ₃	0.64	90.37	4.66	235.16	38.82	128.00	4.60	0.082
T 4	0.73	95.10	4.70	248.37	26.13	128.33	4.56	0.068
T ₅	0.65	90.74	4.58	231.45	33.97	123.66	4.50	0.078
T ₆	0.64	89.25	4.52	220.27	41.81	157.33	4.80	0.072
T ₇	0.73	97.33	4.71	240.21	44.35	131.66	4.37	0.093
T ₈	0.71	94.14	4.72	234.87	44.05	136.33	4.55	0.071
T9	0.61	83.70	3.77	216.85	28.74	179.33	4.36	0.095
T ₁₀	0.65	81.08	3.42	220.12	36.21	118.00	4.53	0.090
CD at 5%	0.02	7.15	0.18	NS	2.43	6.87	0.012	0.001

Table 36. Estimation of soil (0-15) parameters in gram and lentil

The %OC, dehydrogenase activity, available N, P, K and microbiological properties (general bacterial count, phosphate solubilizing bacterial count and nitrogen fixing bacterial count) in treatment T_1 (Gram+ Spray of jeevamrit at 14 days interval) showed highest results. In case of fungus count and actinomycetes count, treatment T_4 (Lentil+ Spray of jeevamrit at 14 days interval) showed highest results (Table 37).

Treatment		Phosphate Solubilizing bacteria ×10 ³	Actinomycetes ×10 ³	Fungus ×10 ²	Nitrogen fixing bacteria ×10 ³
T ₁	14.6	4.9	4.2	2	4.4
T ₂	13.9	4.4	4.0	2	4.3
T ₃	12.5	3.9	4.1	2	4.1
T 4	13.4	4.8	4.6	3	4.1
T ₅	13.0	4.5	4.2	2	4.0
T ₆	11.6	4.1	3.8	2	4.1
T ₇	13.4	4.3	4.0	2	4.2
T ₈	13.2	4.0	3.9	2	3.9
T9	6.3	3.8	3.4	2	3.7
T ₁₀	6.2	3.2	3.1	1	3.2
CD at 5%	0.95	0.66	0.63	NS	0.40

Table 37. Effect of treatments on the microbial count

vi. To study the effect of jeevamrit on productivity and economics of wheat based cropping system

Design: RBD

Replications: 3

Seed treatments with Beejamrit, basal application of Ghanjeevamrit @ 5q/ha and jeevamrit @ 500 l/ha at 30 days interval in all the treatments

T_1	Wheat + pea (1:1) + spray of Jeevamrit at 14 days interval
T_2	Wheat + pea (1:1) + spray of Jeevamrit at 21 days interval
T_3	Wheat + pea (1:1) + spray of Jeevamrit at 28 days interval
T_4	Wheat + sarson (1:1) + spray of Jeevamrit at 14 days interval
T_5	Wheat + sarson (1:1) + spray of Jeevamrit at 21 days interval
T_6	Wheat + sarson (1:1) + spray of Jeevamrit at 28 days interval
T ₇	Organic package-wheat alone
T_8	Organic package- Wheat + pea
T9	Organic package- Wheat + sarson
T_{10}	Absolute control-with T ₁
T_{11}	Absolute control-with T ₄

The data presented in table 38 and 39 showed the data on %OC, microbial biomass carbon, dehydrogenase activity, available N, P, K, soil pH, EC and microbiological properties recorded after the harvest during 2021-2022. The soil pH was in the range of 4.02- 5.15 and EC was in the range of 0.067- 0.098. The % OC was recorded highest in treatment T_7 (Organic package-wheat alone). The microbial biomass Carbon, dehydrogenase activity and available N were recorded highest in treatment T_4 (Wheat + sarson (1:1) + spray of jeevamrit at 14 days interval). In case of, available K, general bacterial count, phosphate solubilizing bacterial count, actinomycetes count, fungus count and nitrogen fixing bacterial count, treatment T_1 (Wheat + pea (1:1) + spray of jeevamrit at 14 days interval) showed highest results. In case of available P, treatment T_9 (Organic package- Wheat + sarson) showed highest results (Table 38 & 39).

Treatments	%OC	Microbial	Dehydrogenase	Available	Available	Available	pН	EC
		biomass	Activity (µg	Ν	Р	K		
		Carbon	TPFg ⁻¹ soil hr ⁻¹)	(Kg/ha)	(Kg/ha)	(Kg/ha)		
		(µg/gm)						
T ₁	0.73	103.34	4.64	252	48.90	218.87	4.53	0.081
T ₂	0.63	99.45	4.50	242	35.84	215.56	4.02	0.067
T ₃	0.64	73.50	4.42	231	44.72	143.71	4.09	0.08
T 4	0.65	113.58	4.68	262	53.76	203.59	4.24	0.093
T ₅	0.53	78.68	4.35	235	35.09	157.93	4.36	0.084
T ₆	0.71	76.61	4.31	228	41.06	169.91	4.19	0.097
T ₇	0.75	69.36	4.60	220	45.92	141.46	4.23	0.070
T_8	0.72	98.86	4.42	245	42.18	149.70	4.25	0.085
T9	0.65	74.54	4.23	231	54.88	138.47	4.45	0.098
T ₁₀	0.53	69.48	4.25	215	44.05	138.57	4.50	0.097
T ₁₁	0.52	70.50	4.15	208	38.00	147.45	5.15	0.083
CD at 5%	0.02	8.03	0.26	9.96	1.11	5.61	0.05	0.001

 Table 38. Estimation of soil (0-15) parameters in wheat based cropping system

Treatment	Nutrient Agar ×10 ⁴	Phosphate Solubilizing bacteria ×10 ³	Actinomycetes ×10 ³	Fungus ×10 ²	Nitrogen fixing bacteria ×10 ³
T ₁	21.0	5.1	4.5	5	4.9
T ₂	18.7	4.7	4.1	4	4.5
T ₃	15.9	3.7	4.1	3	3.7
T_4	18.4	3.5	4.4	4	3.6
T ₅	17.0	3.3	4.3	3	3.2
T ₆	14.9	3.4	3.8	3	3.5
T ₇	17.5	3.9	3.5	5	3.8
T ₈	17.0	4.0	3.6	3	3.8
T9	17.1	3.7	3.6	2	3.2
T ₁₀	14.5	3.7	3.2	2	3.3
T ₁₁	14.6	3.6	3.0	1	3.1
CD at 5%	1.03	0.57	0.25	1.21	0.31

Table 39. Effect of treatments on the microbial count in wheat based cropping system

vii. To study the effect and time of application of jeevamrit on productivity and economics of Oats

Treatments

T_1 Oat (Kent) + spray of <i>Jeevamrit</i> at 14 days interv	T_1	Oat (Kent)	+ spray of	of Jeevamrit	at 14	days interva
--	-------	------------	------------	--------------	-------	--------------

- T₂ Oat (Kent) + spray of *Jeevamrit* at 21 days interval
- T₃ Oat (Kent) + spray of *Jeevamrit* at 28 days interval
- T₄ Oat (Palampur-1) + spray of *Jeevamrit* at 14 days interval
- T₅ Oat (Palampur-1) + spray of *Jeevamrit* at 21 days interval
- T₆ Oat (Palampur-1) + spray of *Jeevamrit* at 28 days interval
- T₇ Organic package- Oat (Kent)
- T₈ Organic package- Oat (Palampur-1)
- T₉ Absolute control-with Kent
- T₁₀ Absolute control-with Palampur-1

The data presented in table 40 and 41 showed the data on %OC, microbial biomass carbon, dehydrogenase activity, available N, P, K, soil pH, EC and microbiological properties recorded after the harvest during 2021-2022. The soil pH was in the range of 4.85- 5.35 and EC was in the range of 0.088-0.099. The %OC, available N, P, general bacterial count, phosphate solubilizing bacterial count, fungus count and nitrogen fixing bacterial count were recorded highest in treatment T_1 (Oats (Palampur Kent) + Spray of jeevamrit at 14 days intervals). In case of microbial biomass carbon, available K and actinomycetes count, treatment T_4 (Oats (Palampur 1) + Spray of jeevamrit at 14 days intervals) showed highest results. Dehydrogenase activity was maximum in treatment T_7 Organic Package- Oats (Palampur Kent) (Table 40 & 41).

Treatment	%OC	Microbial	Dehydrogenase	Available	Available	Available	pН	EC
		biomass	Activity (µg	N (Kg/ha)	P (Kg/ha)			
		Carbon(µg/gm)	TPFg ⁻¹ soil hr ⁻¹)			(Kg/ha)		
T ₁	0.80	98.22	4.70	311	37.36	122.05	5.35	0.088
T ₂	0.70	92.65	4.69	271	30.45	114.69	5.17	0.097
T ₃	0.64	91.19	4.68	267	36.00	106.47	5.12	0.090
T4	0.66	98.95	4.72	292	32.45	137.95	4.85	0.097
T5	0.65	92.25	4.66	244	34.93	110.82	4.96	0.088
T ₆	0.63	90.30	4.66	225	33.56	108.22	5.09	0.096
T ₇	0.76	96.73	4.73	303	36.70	129.70	5.07	0.091
T ₈	0.73	92.75	4.70	298	29.66	117.13	4.92	0.099
T9	0.52	87.91	3.84	268	25.29	103.08	5.01	0.093
T ₁₀	0.58	87.50	3.85	272	26.37	106.09	5.13	0.095
CD at 5%	0.03	6.32	0.05	NS	3.67	8.25	NS	0.003

 Table 40. Estimation of soil (0-15) parameters in oats

Table 41. Effect of treatments on the microbial count in oats

Treatment	Nutrient Agar ×10 ⁴	Phosphate Solubilizing bacteria ×10 ³	Actinomycetes ×10 ³	Fungus ×10 ²	Nitrogen fixing bacteria ×10 ³
T ₁	14.9	5.2	3.7	4	4.4
T ₂	13.4	4.5	3.9	3	3.8
T ₃	12.6	4.2	3.7	2	3.7
T4	13.8	4.7	4.5	2	4.1
T5	13.5	4.6	4.1	2	3.8
T ₆	12.2	4.5	3.8	3	3.4
T ₇	13.5	4.4	4.0	3	4.3
T ₈	13.4	4.5	4.0	2	4.1
T9	9.1	4.1	3.7	3	3.4
T ₁₀	5.9	3.5	3.4	1	3.2
CD at 5%	0.87	0.28	0.38	1.20	0.45

Sr. No.	Name & Admission No. of the students	Research topic	Findings
1.	Raghuveer Choudhary (A-2019-30-019)	Comparative efficacy of different components of natural farming in wheat + gram cropping system	 Combined application of different components of zero budget natural farming i.e.ghanjeevamrit + jeevamrit + mulching proved to be the best treatment for developing a most productive wheat + gram cropping system. However, application of ghanjeevamrit + jeevamrit came out to be the best treatment in terms of net returns per rupee invested. Soil fertility status in terms of available nutrients (NPK) was significantly improved through the application of ghanjeevamrit + jeevamrit + jeevamrit
2.	Navjot Rana (A-2017-40-008)	Evaluation of traditional and conventional farming practices in legume based cropping systems under mid- hills of H.P. Himalayas	 In different cropping systems, mash-garlic system in combination with integrated farming practices i.e., conventional farming practice (43.0 and 43.6 kg ha⁻¹ day⁻¹, respectively) came out to be best in terms of system productivity followed by organic farming practices i.e., traditional farming practice. Use of inorganic farming practices and mash-garlic cropping system proved to be more economical and resulted in lowest cost of cultivation, high gross returns and highest net returns per rupee invested. Organic farming practices came out to be best in terms of effect on soil health of the system whereas integrated farming practice & chemical properties
3.	Saleman (A-2019-30-020)	Effect of organic and inorganic sources of nutrients on productivity of soybean	The treatment, T_6 (50 percent RDF (Fertilizers) + 50 percent RDN (FYM) proved to be the best treatment for enhancing yield and profitability of soybean under mid-hill conditions of Himachal Pradesh
4.	Shilpa (A-2018-40-008)	Studies on tillage, organic and inorganic sources of nutrients in mustard- soybean cropping system	Reduced tillage and 100 per cent recommended dose of fertilizers were found to be the best treatments for better growth & higher productivity and profitability of mustard-soybean cropping system

5.3. PG research findings/results

Name of student Name of Advisor Nature of work Sr. Name of No. Department 1 Microbial count Shilpa Agronomy Dr. Janardan Singh 1. (Ph.D.) 2 Dehydrogenase activity 3 Biomass carbon 4 Phosphatase activity 5 Urease activity 1 Microbial count Deeksha Soil Science Dr. Naveen Dutt 2. (Ph.D.) 2 Dehydrogenase activity 3 Biomass carbon 4 Phosphatase activity 5 Urease activity Deepika Suri Dr. R.K. Sharma Biomass carbon and 3. Soil Science (Ph.D.) nitrogen 4. Raveena Dr. Rameshwar 1 Microbial count Agronomy 2 Dehydrogenase activity (Ph.D.) Kumar 3 Biomass carbon 4 NPK analysis 5 pH 6 Electric conductivity 7 Organic carbon Neha Chauhan Dr. Sanjay Kumar 1 Microbial count Soil Science 5. (Ph.D.) Sharma 2 Dehydrogenase activity 3 Biomass carbon 4 Phosphatase activity Sukhchain Singh Dr. Naveen Kumar 1 Microbial count Agronomy 6. (Ph.D.) 2 Biomass carbon Anjali Thakur 1 Dehydrogenase activity 7. Soil Science Dr. S.P. Dixit 2 Biomass carbon and (Ph. D.) nitrogen 3 Urease activity 4 Phosphatase activity Gaytri Helta Agronomy Dr. G.D. Sharma 1 Microbial count 8. (Ph.D.) 2 Dehydrogenase activity 3 Biomass carbon 4 NPK analysis 5 pH 6 Electric conductivity 7 Organic carbon Isolation of microbes and 9. Varun Parmar Soil Science Dr. Naveen Dutt (Ph.D.) enzymes Soil moisture curve Hemali Soil Science Dr. Pardeep Kumar 10. (Ph.D.) 11. Ankit Agronomy DR. Sandeep Manuja Biomass carbon (Ph.D.)

5.4. Students' lab research work

12.	Lachha Choudary (Ph.D.)	Agronomy	Dr. Sanjay Kumar	1 Microbial count 2 Biomass carbon
13.	Amrita Kumari (Ph.D.)	Soil Science	Dr. S.P. Dixit	1 Dehydrogenase activity 2 Biomass carbon and nitrogen
14.	Arjun Singh (Ph.D.)	Agronomy	Dr. Rameashwar	 Microbial count NPK analysis pH 4 Organic carbon
15.	Anchal Sharma (M.Sc.)	Agronomy	Dr. G.D. Sharma	 Microbial count Dehydrogenase activity Biomass carbon TSS and Mucilage
16.	Alisha Sharma (M.Sc.)	Soil Science	Dr. R.P. Sharma	 Microbial count Dehydrogenase activity Biomass carbon Phosphatase activity Urease activity
17.	Shweta (M.Sc.)	Soil Science	Dr. Sanjay K. Sharma	 Microbial count Dehydrogenase activity Biomass carbon Urease activity
18.	Priyanshi Sood (M.Sc.)	Agronomy	Dr. Rameshwar	Microbial count
19.	Dinesh (M.Sc.)	Soil Science	Dr. S.S. Paliyal	Microbial count
20.	Sachin (M.Sc.)	Agronomy	DR. Janardan Singh	 NPK analysis pH Electric conductivity Organic carbon
21.	Shweta Sagar (M.Sc.)	Microbiology	Dr. Abhishek Walia	Microbial isolation
22.	Pooja (M.Sc.)	Agronomy	Dr. Janardan Singh	1 NPK analysis 2 pH 3 Electric conductivity
23.	Shabnam Thakur (M.Sc.)	Agronomy	Dr. Suresh Kumar	Microbial count
24.	Raghav Sood (M.Sc.)	Plant Breeding	Dr. Gopal Katna	Protein analysis

6. EXTENSION

Faculty of the department plays an important role in dissemination of technologies on 'Organic and natural farming' through delivering lectures and Radi/TV talks, laying out of demonstrations, organization of different training programmes, field days etc..

6.1. Lectures delivered in different programmes: Faculty of the department delivered 72 lectures in on and off campus training programmes during the period under report.

Demonstrations: 126 demonstrations on paddy, maize, millets, mash, ricebean, adzukibean, soybean, wheat, gram, lentil, linseed, cowpea cucumber, green chili, okra, peas and soybean with natural farming and organic farming practices along with control were conducted at ZBNF farm.

6.2. Front-line demonstrations conducted

Sr.	Name of technology disseminated	No. of
No.		beneficiaries
1.	Transfer of technology was carried out in the form of raising	25
	demonstrations on Organic cultivation of Pea on about 6 ha area on farmers' field in Pin valley in village Sagnam and of different choice based agroforestry systems on farmers' fields through peoples' participation approach	
2.	Raised demonstration trials on Onion on farmers' fields in village Mollichak, Banuri Palampur	5
3.	Farmers' field trials on buckwheat at Nichar area of Distt. Kinnaur, Amaranthus at Diyar area of Distt. Kullu and Chenopodium and Amaranthus at Naanj and Kelodhar area of Distt. Mandi through participatory plant breeding	40
4.	Buckwheat trials under AICRN conducted at Kalpa, Distt. Kinnaur	5
5.	Pea seed was distributed for raising demonstrations at Sagnam, Sichling and Hurling village, Spiti valley under the ICAR, TSP project	35

6.3. Workshop/seminar/training organized

Sr. No.	Торіс	Duration	Sponsoring Agency
1.	Curtain Raiser of "International Year of Millets 2023" under the Nutri-cereals Multi-stakeholder Mega Convention, and <i>Poshan Vatika</i> & Tree Plantation Campaign was conducted at CSKHPKV, Palampur on 17 th September 2021, in which 138 participants including farmer (60) and girls (78) were present	One day	Department of Organic Agriculture & Natural Farming, CSKHPKV,
2.	Five type of fruit plants (100 No.) were distributed among the farmers & girls		Palampur

3.	Field days at Sangla & Lari under the project AICRN on Potential Crops (TSP) in which 200 farmers participated	Two days	ICAR, New Delhi
4.	Training programme on Organic & Natural Farming under the TSP project for 25 farmers in Hurling village, Distt. Lahaul & Spiti	One day	TSP, ICAR New Delhi
5.	Training programme on "Popularization of potential crops (Amaranth, Buckwheat and Chenopod) of North Western Himalayas as vegetable and seed under organic and natural farming conditions through participatory plant breeding" at Gram Panchayat Naanj and Gram Panchayat Kelodhar in Karsog valley, Distt. Mandi on 22 ^{nd -} 23 rd December 2021	Two days	State Adhoc. JICA, Shimla
6.	One day training programme to the SC farmers of Maulichak under AICRP on Agroforestry on 25 th March 2022	one day	AICRP on Agroforestry New Delhi
7.	Two days training programme under the JICA project "Popularization of potential crops (Amaranth, Buckwheat and Chenopod) of North Western Himalayas as vegetable and seed under organic and natural farming conditions through participatory plant breeding" for 100 farmers on 28-29 th March 2022 at Garsa and Sainj valley, Distt. Kullu	Two days	State Adhoc. JICA, Shimla
8.	Field days on 'Organic and natural farming' under ICAR, TSP project on 12 th -13 th April 2022	Two days	TSP, ICAR New Delhi
9.	Training programme on 'Importance of potential crops (Amaranth and Buckwheat)' under ICAR, AICRN project on 15 th - 16 th April 2022	Two days	ICAR, AICRN New Delhi
10.	Virtual Lecture Series on 'Scope, importance & challenges of Organic & Natural Farming in India' organized by Department of Organic Agriculture & Natural Farming, CSK HPKV, Palampur on 6 th June 2022	One day	Organic Agricultural Society of India (OASI)
11.	Field day on Organic Farming on 24 th July 2022 at Diora, Distt. Chamba and 25 th July 2022 on Himgiri, Distt. Chamba for 200 participants	Two days	TSP, ICAR New Delhi
12.	A Plantation Drive of planting 300 trees viz. Shahtoot- (<i>Morus alba</i>), Kachnaar- (<i>Bauhinia variegata</i>), Aonla - (<i>Phyllanthus emblica</i>), Harad - (<i>Terminalia chebula</i>) and Bheda- (<i>Terminalia bellirica</i>) at ZBNF Centre of this department by Dr. Janardan Singh, HOD on 22 nd July 2022. During the drive Dr. Mandeep Sharma, Dean COVAS was the Chief guest and Dr. Pardeep Kumar, Dean, CUHP, Dharamshala was the guest of honour, where in 100 students from COA and 10 faculty members were also present	One day	Department of Organic Agriculture & Natural Farming

7.1. Research papers

- i. Choudhary R, Kumar R, Sharma GD, Sharma RP, Rana N and Dev P 2022. Effect of natural farming on yield performances, soil health and nutrient uptake in wheat+ gram inter cropping system in sub-temperate regions of Himachal Pradesh. *Journal of Crop and Weed* 18(2):1–8
- ii. Kumar R, Chadha S, Upadhyay RG, Sharma GD and Kanwar S 2021. Evaluation of different enriched composts under protected organic farming in capsicum-pea based cropping system. *Legume Research An International Journal* 44 (8): 929–935
- Nasaratullah, <u>http://www.hjar.in/index.php/hjar/search/authors/view?firstName=Nasratullah&middleName=&lastName=&affiliation=Department%20of%20Organic%20Agriculture%20and%20Natural%20Farming,%20CSK%20Himachal%20Pradesh%20Krishi%20Vishvavidyalaya,%20Palampur-176%20062&country=IN Kumar R, Manuja S, Sharma RP, Sharma GD, Verma S 2021. Evaluation of different components of natural farming in Black Gram (*Vigna mungo* L.) under mid hill conditions of Himachal Pradesh. *Himachal Journal of Agricultural Research* 47(2): 175–179
 </u>
- iv. Pooja, Singh Janardan, Shilpa, Raveena and Nepali Anamika (2021) Influence of silicon in performance of cereals under drought conditions. *RASSA Journal of Science for Society* 3(3): 166–16
- v. Rana N, Kumar R, Punam, Sharma GD, Sharma RP and Pareek B 2021. Quality traits under different farming practices in legume-based cropping systems. *Himachal Journal of Agricultural Research* 47 (2): 169–174
- vi. Rana N, Kumar R, Punam, Sharma GD, Sharma RP, Pareek B and Upadhyay RG 2021. Performance of different farming practices in legume based cropping systems under midhills of H.P Himalays. *Legume Research (Accepted)*
- vii. Rana S, Singh J, Kumar R and Chauhan R 2021. Zero budget natural farming-need of the hour. *Just Agriculture multidisciplinary e newsletter* 2(1):1–5
- viii. Rizvi RH, Vishnu R, Handa AK, Ramanan S, Yadav M, Mehdi A, Singh RK, Londhe S, Dhyani SK, Rizvi J, Punam, Kumar R and Qaisar N 2021. Mapping of agroforestry systems and Salix species in Western Himalaya agroclimatic zone of India. *Current Science* 121(10): 1347–1351
- ix. Sharma T, Singh J, Kaur N, and Shilpa 2021. Effect of organic and natural nutrient sources on productivity and profitability of cowpea (*Vigna unguiculata*) under mid hill conditions of Himachal Pradesh. *Indian Journal of Agricultural Sciences* (Accepted)
- Shilpa and Singh, Janardan (2021) Conservation Agriculture: A Sustainable Alternative Way for Maintaining Soil Resource Base. *RASSA Journal of Science for Society* 3(1):33–37
- xi. Shilpa, Singh J and Pooja 2022. Influence of tillage practices and nutrient sources on growth parameters and their correlation with yield of soybean (*Glycine max L.*) *Merill*). *Soybean Research (Accepted)*
- xii. Shilpa, Singh Janardan, Saini Ankit, Sharma Tarun and Parita (2021) Effect of tillage and fertilizer doses on growth and growth indices of soybean (*Glycine max* L.) under conservation tillage systems. *Environment Conservation Journal* 22 (3): 181–186

- xiii. Singh J, Kumar R, Choudhary AK, Shilpa and Rathore S 2021. Agricultural diversification through medicinal and aromatic crops – A review. *Indian Journal of Agronomy* 66 (5th IAC Special issue): S73–S83
- xiv. Singh J, Rameshwar, Katna G, Kumar R, Sharma GD, Upadhyay RG, Kumar R, Rana S and Jyoti 2022. Performance of Finger Millet under Organic and Natural Production Systems. *International Journal of Tropical Agriculture* 40 (1-2): 97–103

7.2 Papers presented in conferences/symposia

- i. Datt Naveen, Singh Janardan, Rameshwar, Katna Gopal, Kumar Rakesh, Sharma GD, Rana Sheetal, Jyoti and Kumar Raj (2022). Effect of Organic and natural inputs on chemical and microbiological properties of soil. In soybean crop. *In* 1st Agrivision zonal convention on "Natural Farming: A National priority for Human health and ecological restoration" *w.e.f.* 5-6th April, 2022 at Sher-e-Kashmir University of Agricultural Science and Technology of Jammu
- Katna G, Singh Janardan, Rameshwar, Kumar Rakesh, Sharma GD, Sharma Neelam, Kumari Jyoti, Kumar Raj and Kulbhushan (2022). Evaluation of different genotypes of wheat, lentil and chickpea under SPNF conditions. *In* 1st Agrivision zonal convention on "Natural Farming: A National priority for Human health and ecological restoration" *w.e.f* 5-6th April, 2022 at Sher-e-Kashmir University of Agricultural Science and Technology of Jammu
- iii. Kumar Rakesh, Singh Janardan, Rameshwar, Katna G, Sharma GD, Rana Sheetal and Negi Manoj (2022). Evaluation of natural farming inputs for the management of *Riptortus* bug sp. In soybean crop. *In* 1st Agrivision zonal convention on "Natural Farming: A National priority for Human health and ecological restoration" *w.e.f.* 5-6th April, 2022 at Sher-e-Kashmir University of Agricultural Science and Technology of Jammu
- iv. Rameshwar & Sood Pankaj (2022) Natural Farming: A Potential Pathway for Sustainable Agriculture in Western Himalayas. In 10th National Seminar on Agriculture and more: Beyond 4.0 " w.e,f. 26-28 May, 2022 at Sher-e- Kashmir University of Agricultural Sciences and Technology of Kashmir, Main campus, Shalimar, Srinagar
- v. Rameshwar, Singh Janardan, Katna G, Kumar Rakesh, Sharma GD, Sharma Neelam, Kumar Raj and Kulbhushan (2022). Comparative performance of different crops under SPNF and Organic Farming conditions. *In* 1st Agrivision zonal convention on "Natural Farming: A National priority for Human health and ecological restoration" *w.e.f.* 5-6th April, 2022 at Sher-e-Kashmir University of Agricultural Science and Technology of Jammu
- vi. Rana S, Datt N, Sharma GD and Kumar R (2021) To study the effect of SPNF inputs on soil chemical and microbiological properties of maize intercropping system. *In* National conference on "India's challenge- contemporary farming to smart farming *w.e.f.* 8-9th April, 2021 at Chandigarh University, Chandigarh.
- vii. Raveena, Kumar Rameshwar, Sharma GD, Sharma Raj Pal, Walia Abhishek and Singh Janardan (2022). Influence of natural farming practices on soil health. *In* 1st Agrivision zonal convention on "Natural Farming: A National priority for Human health and

ecological restoration" *w.e.f.* 5-6th April, 2022 at Sher-e-Kashmir University of Agricultural Science and Technology of Jammu

- viii. Sharma Tarun, Singh Janardan and Shilpa (2021) Organic pulse production: Need of the hour (A review). National Web Conference on 'Sustaining Pulse Production for Self Sufficiency and Nutritional Security *Abstract*: Pulse WebCon, Feb 09-11, Kanpur p: 11.
- ix. Shilpa and Singh Janardan (2021) Climate resilient conservation agriculture practices enhancing productivity of soybean under mid hill conditions of Himachal Pradesh. Virtual National Conference on "Strategic Reorientation for Climate Smart Agriculture" (V-AGMET 2021) March 17-19th, 2021, Punjab Agricultural University, Ludhiana, p: 198-201.
- x. Shilpa and Singh Janardan (2022) Performance of black gram genotypes and organic carbon under maize + black gram intercropping system. International Conference on Pulse Research (ICPR-2022), Society for Plant and Agricultural Sciences (SPAS) on the occasion of World Pulses Day (February 10th, 2022). p:145
- xi. Shilpa, Singh Janardan and Kaur Navneet (2022) Influence of black gram genotypes and nitrogen levels on performance of maize equivalent yield and available status of soil under maize + black gram intercropping system. National Conference on " Maize for Resource Sustainability, Industrial Growth and Farmer's Prosperity" February 23-25.p: 81
- xii. Singh Janardan, Kumar Rakesh, Katna G, Kumar Rameshwar, Sharma G.D., Bhardwaj Neelam, Kumar Raj, Rana Sheetal and Kulbhushan (2022) Productivity and profitability of crops as influenced by natural and organic production systems. 1st Zonal Convention Agrivision-2022 on 'Natural farming: A National Priority for Human Health and Ecological Restoration' held on April 5-6, 2022 at SKUAST, Jammu, J&K (UT). Souvenir and Abstracts, Page 91

7.3 Book Chapters

- i. Pooja, Singh Janardan, Shilpa and Raveena (2022) Organic Farming. Modern Concept of Agronomy Vol (1) Vital Biotech Publication ISBN: 978-93-92953-49-1
- ii. Pooja, Singh Janardan, Shilpa and Raveena.2022. Effect of climate change on Agriculture Production System. Modern Concept of Agronomy Vol (1)Vital Biotech Publication ISBN : 978-93-92953-49-1
- iii. Badiyala Aditi, Kanwar S and Sharma GD. 2021. Evaluation of bioagent and organic products against collar rot of tomato under protected condition. In: Crop Protectiondriven food safety and security 2022 (Eds. Abhijeet Ghatak, Ramanuj Vishwakarma, Nishant Prakash and Ranjeet Kumar) International Books and Periodical Supply Service, Pitampura, Delhi: 139–144

7.4 Popular articles

- i. Badiyala, Aditi and Singh, Dhanbir. 2021. Eco-friendly approaches for managing major okra insect-pests. Just Agriculture e- Newsletter 2 (2) 8 pages
- ii. Badiyala, Aditi and Singh, Dhanbir. 2022. Liquid manures for organic/natural farming. Agriculture and Food e-Newsletter 4(1): 321–324

- iii. Badiyala Aditi, Sharma GD and Singh Dhanbir. 2022. Cow based bioformulations for pest management. Agriculture & Food e-Newsletter 4(4): 361–363
- iv. Badiyala Aditi and Soni Saurbh. 2022. Labhkari hain gaaye ke utpadon se nirmit keetnashi sutr. Giriraj Saptahik 44 (35):5
- v. Badiyala Aditi and Singh Dhanbir. 2022. *Gaaye ke utpaadon se nirmit rognashi astra hain labhkari*. Giriraj Saptahik 44 (40):5
- vi. Pooja and Singh Janardan (2021)Shunya budget prakritik kheti. Rajshri Sandesh 3(1):2-3
- vii. Pooja and Singh Janardan (2022) Abscisic acid: As a Signaling Agent of Stress. Agriculture and Environment e-newsletter 3(3): 58–67
- viii. Pooja, Singh Janardan, Shilpa and Raveena (2022) Organic Farming Certification in India. Just Agriculture multidisciplinary e- newsletter 2(8): 1–6
- ix. Punam and Rameshwar (2021) Pamphlet on "*Krishi vaniki ke antargat har medh pe ped*" pg 1–3, Deptt. Horticulture & Agroforestry, CSKHPKV publication
- x. Punam, Rameshwar, Handa AK and Arunachalam A (2021) Oonche shushk sheetoshan kshetron mein krishi vaniki system dwara chara prabhandan" pg 1–5, Deptt. Horticulture & Agroforestry, CSKHPKV publication
- xi. Raj Kumar and Singh Janardan (2022) Prakritik Kheti. *Rajarshi Sandesh* July-December 3(2):17-20 *Rajarshi Sandesh* 3(1):3–4
- xii. Rana Sheetal, Rana Rachana, Singh Janardan, Kumar Rameshwar and Chauhan Rakesh (2021) Zero budget natural farming- need of the hour. *Just Agriculture Multidisciplinary e-newsletter*. 2(1):1–5
- xiii. Sharma, Tarun and Singh Janardan (2021) *Phasal utpadan mein phaliyon ka mahtava*. *Rajarshi Sandesh* 3(1):3–4.

7.5 Brochures

- i. Singh, Janardan (2022) Brochure, Department of Organic Agriculture and Natural Farming, CSK HPKV, Palampur
- ii. Singh, Janardan (2022) Brochure, Organic Agricultural Society of India, Department of Organic Agriculture and Natural Farming, CSK HPKV, Palampur

7.6 Reports/Bulletin

- i. Annual Progress Report of the SPNF project
- ii. Self Study Report (SSR) of the University
- iii. All other reports desired by the authority from time to time

8. PARTICIPATION IN WORKSHOPS/ SEMINARS/ CONFERENCES / TRAININGS / MEETINGS

Scientists of the department participated in different programmes to improve their professional efficiency. The details of the same are given as under:

Sr. No.	Date	Name of programme and organizing agency	Name of the faculty/staff
1.	25-26 th June 2022	International Conference on Agriculture, Horticulture & Plant Sciences" organized by the Tropical Society of India held at New Delhi	Dr. Janardan Singh
2.	18 th June 2022	REC meeting organized by the Directorate of Research held at CSK HPKV Palampur	Dr. Janardan Singh Dr. Rameshwar
3.	6 th June 2022	Virtual Lecture Series on 'Scope, importance & challenges of Organic & Natural Farming in India' organized by the Organic Agricultural Society of India (OASI), Department of Organic Agriculture & Natural Farming, CSK HPKV, Palampur	Dr. Janardan Singh Dr. Rameshwar Dr. Gopal Katna Dr. Rakesh Kumar Mr. Raj Kumar
4.	26-28 th May 2022	10 th National Seminar on Agriculture & more: Beyond 4.0" held at SKUAST, Kashmir, Srinagar	Dr. Rameshwar
5.	20-21 st May 2022	AGRIVISION-2022 held at NASC Complex, New Delhi	Dr. Rameshwar
6.	10-11 th May, 2022	Annual Group Meet (AGM) on <i>Kharif</i> pulses of AICRP on MULLARP Pigeonpea and Arid Legumes" organized by the Indian Society of Pulses Research and Development (Kanpur) held at CSKHPKV, Palampur	Dr. Janardan Singh Dr. Gopal Katna
7.	6 th May 2022	4 th National Conference SVAHE 2022 Approaches for livestock development organized by COVAS held at CSKHPKV, Palampur	Dr. Janardan Singh
8.	4 th May 2022	Meeting of Executives, Organic Agricultural Society of India (OASI) in the Deptt. of Organic Agriculture & Natural Farming, CSKHPKV, Palampur through hybrid mode	Dr. Janardan Singh Dr. Rameshwar Dr. Gopal Katna Dr. Rakesh Kumar
9.	20 th April 2022	'Crop Day 2022' organized by CSK HPKV, RWRC, Malan, Distt. Kangra	Dr. Janardan Singh
10.	5-6 th April 2022	1 st Zonal Convention on Natural Farming: A National Priority for Human Health and Ecological Restoration jointly organized by Agrivision at SKUAST-Jammu	
11.	4 th March 2022	SAC meeting of KVK, Hamirpur organized by Director Extension Education, CSK HPKV at Bara	Dr. Janardan Singh
12.	19 th March 2022	SAC meeting of KVK Mandi organized by Director Extension Education, CSK HPKV at Sundernagar	Dr. Rakesh Kumar
13.	21 st March 2022	SAC meeting of KVK Kangra organized by Director Extension Education, CSKHPKV	Dr. Rameshwar

14.	28 th March	SAC meeting of KVK Una organized by the	Dr. Rameshwar
	2022	Director Extension Education, CSKHPKV	
15.	1 st	Task force meeting of PK3Y under the chairmanship	Dr. Rameshwar
	Feb. 2022	of Chief Secretary, Agriculture organized by the	
		Executive Director, PK3Y, SPIU held at Shimla	
16.	6 th January	Interaction meeting with Mr Ishizaki Yoshiyuki,	Dr. Janardan Singh
	2022	Chief Advisor, JICA-TCP, Dr. R. K. Sharma,	Dr. Rameshwar
		Expert, JICA on with the faculty and SPNF team to	Dr. Gopal Katna
		discuss the ongoing activities and progress of natural	Dr. Rakesh Kumar
	-	farming	Mr. Raj Kumar
17.	23–27 th	Agri Innovations to Combat Food and Nutrition	Dr. Janardan Singh
	November	Challenges, held at PJTSAU, Hyderabad, Telangana	
	2021		
18.	25 th	2 nd meeting for finalization of varieties suitable for	Dr. Gopal Katna
	November	state under seed plan with National seed Corporation	
	2021	under the chairmanship of Secretary, Agriculture	
10	aand	Govt. of H.P. Shimla	
19.	22^{nd}	Awareness programme-cum-workshop on 'Safe use	Dr. Janardan Singh
	October	of pesticides and adoption of good agricultural	
	2021	practices for the production of Basmati rice' held at	
20	23 rd	Dhanotu (Rait), Distt. Kangra	Du Damaslana
20.		Review Meeting of the research projects sanctioned	Dr. Rameshwar
	September 2021	under <i>Prakritik Kheti Khushaal Kisaan Yojna</i>	Dr. Gopal Katna
	2021	(PK3Y) at State Projects Implementing Unit (SPIU),	
21.	20 th	Krishi Bhawan, Shimla on Fertilizer Awareness Programme under <i>Parampragat</i>	Dr. Janardan Singh
21.	September	Krishi Vikas Yojna" held at RSS Akrot	Di. Jaharuan Shigh
	2021	Krishi vikus Tojhu neki u Kos Tikiot	
22.	17 th	Curtain Raiser of International Year of Millets 2023	Dr. Janardan Singh
	September	under the Nutri-cereals Multi-stakeholder Mega	Dr. Gopal Katna
	2021	Convention, and Poshan Vatika & Tree Plantation	Dr. Rakesh
		Campaign organized in association with the DEE,	
		CSK HPKV, Palampur	
23.	9 th -13 th	Training programme on "Organic Farming" under	Dr. Janardan Singh
	August	Skill Training for Rural Youth of Distt. Chamba held	Dr. Rameshwar
	2021	at FTC Dharamshala organized by Sr. SMS-cum-	
		Liaison Officer, FTC Dharamshala	

9. HONORS, AWARDS AND RECOGNITIONS

- i. Dr. Janardan Singh was nominated as **Advisor** by the ASRB, New Delhi for moderation of ARS question papers of Agronomy for recruitment of scientists in the ICAR Institutions held from 7th- 8th October 2021
- Dr. Janardan Singh was nominated as a Member of National Steering Committee for the 5th International Agronomy Congress on "Agri Innovations to Combat Food and Nutrition Challenges", held from 23rd- 27th November, 2021 at PJTSAU, Hyderabad, Telangana, India
- iii. Dr. Janardan Singh was nominated as one of the members of Committee constituted by the President, Indian Society of Agronomy, New Delhi for providing 20 topics matching with the various themes of 5th International Agronomy Congress held during 23rd-27th November 2021 for its publication in Indian Farming
- iv. Dr. Rameshwar Kumar was nominated as an *Expert* in Bihar Public Service Commission for the interviews of Asstt. Director (Agronomy) held at Patna w.e.f. 22nd -27th November 2021
- v. Dr. Janardan Singh was nominated as **Advisor** of the Selection Committee by the ASRB, New Delhi for conducting the interview of the candidates for Senior Technical Officers in ICAR Institutions held from 8th-11th March 2022
- vi. Dr. Janardan Singh received the *Best Paper Award* during the 1st Zonal Convention on Natural Farming: A National Priority for Human Health and Ecological Restoration held at SKUAST-Jammu on 5-6th April 2022
- vii. Dr. Janardan Singh was bestowed with the prestigious *Dr APJ Abdul Kalam Scientist Award* for significant contributions in the field of teaching, research & extension during the 13th International conference on *'Agriculture, Horticulture and Plant Sciences'* organised by the Society of Tropical Agriculture held at New Delhi from 25th- 26th June, 2022
- viii. Dr. Janardan Singh was bestowed with the *ISNS Fellow-2021* Award for the significant contribution in the field of Agriculture by the International Society of Noni Science, Chennai, Tamil Nadu
- ix. Dr. Janardan Singh was nominated as an **External Examiner** in the university panel by the Tamil Nadu Agriculture University (TNAU) for evaluation of M Sc. and Ph D. Thesis
- x. Dr. Janardan Singh was nominated as **External Examiner** for the evaluation of M.Sc. Thesis by the Dean and Joint Director (Edn.), IARI, New Delhi
- xi. Dr. Janardan Singh was nominated as **External Expert** for the interview of Project Associate-I under the project "Establishment of Demonstration Farms of Aroma Cash Crops in District Kupwara" conducted by the CSIR-Aroma Mission J&K under the project K-5000 (GAP-0212)
- xii. Dr. Janardan Singh was nominated as **an External Expert** of Research Advisory Committee by LPU to monitor the progress of Ph.D. Research Scholars of Lovely Professional University, Jalandhar

- Renovation of old farm building and new building, rooms and halls in terms of white washing, painting, roof gutter and covering of drain channels at Model Organic Farm. Creation of independent Farm Incharge room, class room, farm office, biofertilizer lab, store room etc. with all required facilities
- Creation of facilities for teaching/practical classes of ELP students by providing LCD projector, white board, desk computer, printer, chairs with writing pad, executive table, podium etc.
- Creation of facilities and modernization of the labs by providing vertical blinds, partitioning of labs with pre-laminated boards, aluminum sliding doors, table glasses for working tables and some need based equipment's in the labs
- Creation of RO water drinking facility for students and visitors at Model Organic Farm
- Installation of Solar lights under green initiatives in the main campus of the department and also at each farm of the department
- Infrastructure development by providing approach road to the new building of the department; land leveling; parking facility for faculty, staff, students and visitors; seating benches in front of the building in the department.
- Upgradation of the departmental website and its full contents
- Creation of farm facilities by providing solar lights and got the construction work of bitumen metaled approach road done from University workshop to the ZBNF farm

- Solution One Research project entitled "DUS testing of Buckwheat at HPKV, RSS Sangla" worth Rs.6.45 lakhs (annual grant) sponsored by PPV FRA was implemented in this department
- Some Research project entitled "Efficacy of indigenous cow based bio-formulations as soil inoculants and pesticides in agriculture" worth Rs. 40.5 lakh sponsored by DBT, New Delhi was implemented in this department
- > Dr. Janardan Singh was appointed as Chairman for conducting ICAR UG and PG Counseling at CSK HPKV, Palampur
- ▶ Dr. Rameshwar Kumar acted as *Member* of committee to prepare a draft document to suggest strategy to address the concerns of the small and marginal farmers through natural farming. One of the terms of reference of the Expert Group to prepare an ambitious action plan for the agriculture sector for the state of Himachal Pradesh
- ▷ Dr. Gopal Katana performed the duty of Supervisor, JOA (IT) exam, CSKHPKV Palampur held at Hamirpur on 21st July 2021
- > Dr. Rakesh Kumar performed the duty of Supervisor, JOA (IT) exam, CSKHPKV Palampur held at Solan on 21st July 2021
- Head along with the scientists of the department visited five blocks *viz*. Indora, Rait, Bhawarna, Bhedu Mahadev and Lambagaon in Distt. Kangra from 5th-6th Aug. 2021 and interacted with the 16 farmers practicing natural farming
- ▷ Dr. Janardan Singh, Head and Dr. Rameshwar Kumar, Principal Scientist delivered a lecture as Resource Persons during a Training programme on "Organic Farming" under Skill Training for Rural Youth of Distt. Chamba held at FTC Dharamshala w.e.f. 9th-13th August 2021 organized by Sr. SMS-cum-Liaison Officer, FTC Dharamshala
- Dr. Gopal Katna and Dr. Rakesh Kumar acted as Member of Organizing committee & Stage Secretary during Curtain Raiser of 'International Year of Millets 2023' under the Nutri-cereals Multi-stakeholder Mega Convention, and *Poshan Vatika* conducted at CSKHPKV, Palampur on 17th September 2021, in which 138 participants including farmer (60) and girls (78) were present
- ▷ Dr. Janardan Singh was Member of Gold Medal & Certificate distribution committee during the 16th Convocation held at CSKHPKV Palampur on 23rd August 2021
- ▷ Dr. Rameshwar Kumar visited the fields of farmers practicing SPNF at Bilaspur and Mandi blocks on 1st September, Sujanpur, Hamirpur & Naduan areas on 20th September 2021

- ▷ Dr. Rameshwar Kumar was nominated as Member of Review Meeting of the Expert Groups for Agriculture Sector on 8th October 2021 at CSKHPKV, Palampur
- Solution Faculty of the department performed the duty of Invigilator for the JOA (IT) exam of Dr. YSP UHF, Nauni, Solan on 24th October 2021
- ▷ Dr. Gopal Katna was nominated as Member during the '2nd meeting for finalization of varieties suitable for state under seed plan' with National seed Corporation under the chairmanship of Secretary, Agriculture, Govt. of H.P. Shimla on 25th November, 2021
- > Dr. Rameshwar Kumar acted as an Expert in conducting the online interviews of the adhoc Project at IHBT Palampur
- ▷ Dr. Rameshwar Kumar was Rapporteur in the *Rabi* Agriculture officer workshop organized on 28th December 2021
- Solution Series Ser
- ▷ Dr. Rakesh Kumar acted as Nodal Officer, COVID-19 to contain the spread of COVID virus in the boys hostels of the University during 11th -26th January 2022
- ▷ Dr. Rameshwar Kumar acted as Convener of Technical committee of one day stakeholder meet of Medicinal Plant sector of HP in University on 17th March 2022
- ▷ Dr. Gopal Katana performed the duty of Invigilator, Written test for the post of Police constable on 27th March 2022
- ▷ Dr. Gopal Katna and Dr. Rakesh Kumar conducted an Exposure visit of ELP students on Organic Agriculture to PAU, Ludhiana w.e.f. 25-27th May 2022
- ▷ Dr. Rakesh Kumar attended and presented the Natural Farming Technologies during the National Conference of KVKs-2022 at Dr.YSP UHF, Nauni Solan on 1st 2nd June 2022
- Dr. Rameshwar Kumar was nominated as Member Secretary of Research Evaluation Committee of the University and conducted REC meeting as Member Secretary on 18th June 2022

>>> VIP visits conducted

Sr.	Name of visitor	Address	Date and Purpose
No.			-
1.	Sh Rajendra	His excellency, Hon'ble	17 th May 2022
	Vishwanath Arlekar	Governor and Chancellor,	Visited ZBNF centre to review
		CSK HPKV, Palampur	the ongoing research activities
			under SPNF & ZBNF
2.	Mr. Ishizaki Yoshiyuki	Chief Advisor, JICA-TCP	6 th January 2022
	and		To review the ongoing research
	Dr. R. K. Sharma	Expert, JICA	activities on natural farming
3.	Dr. S.K. Baldi	Retd. Secretary Finance,	26 th December 2021
		Govt. of H.P	To review the ongoing research
			activities at ZBNF

>>> Comments and Views of the visitors (VIP, dignitaries, officers, farmers etc.)

Dal	(Optails	Phone	[-mail	Suggestions
29/07/21	Renation Glacy	94129 3248		- virulta sta (mae, à
-			54	בהיש, נכיאן שהרי, מוחדה בהועצ האושר של אוש שר שינה או -תר צב צו צדם הפיק בנוריש
,				
	F			
	Trainer of faing the dearers	8278776RY		all hope to get towards.
	g- H.P. 25 No.	3		friender preside sion. frank bere for fature endowned
	25 No.			
Dale	Personal Delails	Phone	Ermail	Suggestions
15 8.21	Artwani Kaushal.	005074766		It was a very nice exponence to have first hand knowledge
•	Astwar Eauthar. Member BOG HPTU Member H.P. Higher Education Council	1813 0111		of 2BNF. St was explained
.,	Council		Barrie Barrie	In very simple terms by Dr. Janarshen Singh gi and his
			THE PARTY OF	team.
19-8-2.21	Raj Singh Y. P.O Balcer Teh Brologa - 10 vullenter	6230176090		की मान प्रमान्ति निभाला मे
	len molona - o visuente			रि दम इन्टेंस व्हेम्झ दी 10 फार्मर आहे और प्राहोल रवेरी
44	and the second s			के जोर ते दिसा और सनावत्त जुरू सिरको जा भिला और
				हैंस जल भाषा जी के हमें बहट ही अख्य आहा किरो
100	1.54 N			avised they

()ale	Personal Delails	Phone	Email	Suggestions
11. 2021	Titiksha, Agriculture Estension Diffi	~ 76500 7731B	and here is	It was very good experience.
	Dist. Chamba, HP.			Everything was discussed in Nel
	Decksha, Agriculture Exension Officer	86268 24640		farming came to know about
6 () (h	Duff Chamba HP.		he is	various formulations and use
	(35 formers).			locally available resources. under
				28NF. Its texplayers off for was very any conspansive and
				told everyting very will

y Dale	Personal Delails	Phone	[-mail	Suggestions .
85.11.2021	Manpueet Singh, (AS1)	98384+8180	-	Experier was good. We farmers will Bam.
•	Chief Aquiculture office. Honsa, Canjab			mare about 2BNF
+	9884-87866		14	ond can 20 en.
6411 2021	(20 tomen) Frincldeep Singh	8720-26517	pdalinasberga@gmail.ca	Experimentarea was well.
	Brijeet Director (ATMA)	New Street		good hnowledge don't argund
*	Distt. Shalid abagat Suf Nigar Chief by Sullin office.			Farring.
1.1.44	(19 Ponrus	358/24/34		very winder but himstylin
1282 (21)	In Maurish heel Wahnel Farma and		swordhyay hereth care	an notice family, gut.
	pulme from Do tra		O Grandi Li cum.	promote pathone thruly.
				1000

	Clo Trainees of SJUN(Stimul Isaining organized at	Phone 6026052477	[-mail	France wear well movinde to & very well explained dury Conduct & Vigit -Ch
	DET CCL'H DIV Plp NO-50. Ame motsarp EDMARTHI CMO avoidy 11C. 2 MFC officers form To Chandrigan	7821805524	1	Good Natural & assamic Jaconing gystem for practising at. Former level.
· 4 2 / 2 0 22	Der Sharma drem Rajusthan Julian II - Sitratai	9205015128		Nice work done on 2000 21 हा पर जारत की के कुति प्रकार को जीदनाहित किया जा रहा हो न उन-नदन्दर्ग जी उनेका जा रहा हो न उन-नदन्दर्ग जी उनेका का रहा हो दिने प्रसे वह Clift की कि कि कि रनिपर्स कह Clift की कि कि कि

Date	Personal Delails	Phone	E-mail	Suggestions
		941825/195	dix ispanse yeho to in	
8/4/22	and well maintained R		0	Drieber of Researce
+	beep it up.			Shear y
22/4/22	- Visit y trainees of Interset Again - beganised under CSVN at DFE CSIL HOW	52-477	-	very well maintaind 1 of plaint 22 /4/22
	flp: (No-25)	60060		22 7
22/4/22	wich of training of Panpur elimba Under BUN Repare at DEL, CSK Holes Pep.			2014(22
	(NO25)	1. 		a de la participa de la comparticipa de la comparti
17/05/2022	Henerable Governor (H.P) Sh Pojinder vishisarrum Aulka	-		

Dale	Personal Delails	Phone	Email	Suggestions very informative
20/2/22	exposure vict cum thain y	52477		20 5/22
30	<u>organised by Gram</u> <u>Talagum Samiti Sayyan</u> <u>Samig Dist Colon</u>	2.65		
	(H.P.) at DEE COUNTENPL	6. 94/266234/		llane & the
03043033	experience field 16 very			Excellance atringt
	Jos Sudenty. Dr. V.K. Singe (Asverling) S. V.R.V. A. U.S.F. Meerer.			

Dala	Personal Delails	Phone	[-mail	Suggestions
25/06/2022	Students (26) of BSC (M) Botony	8010247551	anwrag @ Shivaji du ac . In	It was wonderful opposure and
and the second	and BSC. (Life science) from	9813875558	0 0	experience for faculty as wells.
-	Shivaji College, University of Delhi			Students. Students Caroredopat
,	along with 5 faculty members and			lechniques adapted for natural
	3 Lab staffs is disited in the field			forming.
	It was part of thip organised under			
	The argin of DBT star callye schame.			Anusophan stations
1/7/22	Stolen (62) of BSC (Mory)	9418120632	dramitsaurese Ca	It was a mesore
*	Aprimetie fron Eteral		gnail. Co.	Experence while wety
	Concrety Barn Salub			this place. Shdeets Cal
	be education for			ha kai abot may the for
	who I faulty menter			1 AF
	6 0			This
				11415

12.1 Visit of VIPs at Zero Budget Natural Farming (ZBNF) Centre

His Excellency, Hon'ble Governor, Sh Rajendra Vishwanath Arlekar's visit (17th May 2022)

Sh. S.K. Baldi, *Retd.* Secretary Finance, HP Govt.'s visit (26th December 2021)

Mr Ishizaki Yoshiyuki, Chief Advisor, JICA-TCP & Dr. R. K. Sharma, Expert's visit (6th January 2022)

Sh. Anil Motsarg, ED (Mkt), CMO Noida and NFL officers, Chandigarh's visit (15th March 2022)

Dr. B.N. Tripathi, DDG, Animal Science's visit (6th May, 2022)

Dr. S.P. Dixit, Director of Research's visit (8th April 2022)

12.2 Visit of Officers/farmers/students/NGOs/trainees etc. at ZBNF

Sh. Ashwani Kaushal, Member, BOG, HPTU & Higher Education Council's visit (15th August, 2021)

Farmers from Mansa, Punjab's visit (25th November 2021)

ADOs from Deptt of Agriculture, H.P.'s visit (4th March, 2022)

Farmers from Hamirpur District's visit (7th March, 2022)

Farmers from Hamirpur & Chamba District's visit (10th March, 2022)

Farmers from Samra, Distict Solan's visit (13th March, 2022)

Farmers from Hanumangarh's visit (15th March, 2022)

Sh. Dinesh Kumar from Jabalpur's visit (6thApril, 2022)

Farmers from District Mandi's visit (7th April, 2022)

Farmers from Nagrotra Bagwan's visit (22nd April, 2022)

Students from Meerut college's visit (3rd June, 2022)

Students of Shivaji College, University of Delhi's visit (25th June 2022)

12.3. Participation of faculty in conferences/seminars

Faculty of the department attending the 1st Zonal Convention on 'Natural Farming: A National Priority for Human Health and Ecological Restoration' held from 5th to 6th April 2022 at SKUAST- Jammu

Oral presentation & honoring of Dr. Janardan Singh during the 5th International Agronomy Congress held from 23rd to 27th November, 2021 at PJTSAU, Hyderabad, Telangana

Oral presentation by Dr. Janardan Singh during 1st Zonal Convention on 'Natural Farming' held from 5th to 6th April 2022 at SKUAST, Jammu

Dr. Janardan Singh receiving the prestigious Dr APJ Abdul Kalam Scientist Award during International Conference held from 25th to 26th June 2022 at New Delhi

12.4 International Year of Millets and Tree plantation drive

Online inaugural of 'International Year of Millets 2023'

Distribution of plants to the farmers and girls during Poshan Vatika

Mrs. Monika Sharma, Councilor, MC, Palampur chairing the programme as Chief Guest

Plantation drive of fruit trees by the Chief Guest, Coordinators, faculty & staff

Curtain Raiser of 'International Year of Millets 2023' conducted under the Chairmanship of Hon'ble Agriculture & Farmers Welfare Minister, Sh. Narender Singh Tomar ji on 17th September 2022

Plantation Drive - 300 plants planted by the Chief Guest, Dr Mandeep Sharma, Dean, COVAS, Dr Janardan Singh, Head, faculty and students at ZBNF Centre on 22nd July 2022

12.5 Farewell function



Farewell function on the eve of superannuation of Dr. R.K. Kataria, Dean, College of Agriculture CSK HPKV, Palampur (28th October, 2021)

Farewell function on the eve of superannuation of Dr. R.G. Upadhyay, Head, Deptt. of Biology & Environmental Sciences, College of Basic Sciences, CSK HPKV, Palampur (28th January, 2022)

12.6 Field days/training camp

Field day at Sangla, Kinnaur (7th November 2021)

Field day at Lari, Lahaul-Spiti (9th November 2021)

Field day at Lari, Lahaul-Spiti (12th April 2022)

Training programme at Diyar and Sainj valley, Distt. Kullu (28-29th March 2022)

Training progarmme at G.P. Naanj and Kelodhar, Karsog valley, Distt. Mandi (22-23rd December 2021)

12.7 Visit of faculty to farmers' fields of Kangra district

Bhawarna, Bhedu Mahadev and Lambagaon block in Distt. Kangra (6th August 2021)

Gram Panchayat Kelodhar and Naanj, Karsog valley, Distt. Mandi (26th- 27th May 2022)

12.8 Infrastructure developed/facilities created

Creation of facilities in new Office Building

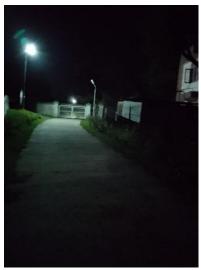
Solar light facility

Separate rooms

Well equipped Soil and Microbiology laboratories

A separate Conference hall, Library & Store room

Library


Renovated old Farm Building

Farm Incharge room

Biofertilizer lab

Solar lights at main gate

ELP teaching with all the facilities

Metalling of the approach road from University workshop to ZBNF Centre

12.8 Department in the print media

पालमपुर । आतमा परियोजना पालमपुर के परियोजना निदेशक डॉ. शशि पाल अत्रि, चौधरी सरवण कुमार कृषि विश्वविद्यालय पालमपुर से वैज्ञानिकों की टीम जिसमें प्राकृतिक एवं जैविक खेती के विभागाध्यक्ष डॉ. जनार्धन सिंह, कृषि वैज्ञानिक, कृषि वैज्ञानिक डॉ. रामेश्वर, डॉ. राकेश व राज कुमार ने विकास खंड भेडू महादेव के गांव गुजरेड़ा (वारी) में अमर सिंह के खेतों का भ्रमण किया और प्राकृतिक खेती की विधि से बिजी गई मक्की की फसल और सह फसल के रूप में बोई गई सोयाबीन की फसल का निरीक्षण किया। डॉ. जनार्दन सिंह ने खेतों के भीतर जाकर किसानों को प्राकृतिक खेती के सिद्धांतरें की विस्तार से चर्चा की। इस मौके पर डों. गशि पाल अत्री, परियोजना निदेशक (आतमा) पालमपुर, उपं परियोजना नेदेशक डॉ. अरुण वयास और डॉ. अमित शर्मा ने भी अपने विचार रखे भेर प्राकृतिक खेती की बिधि को अपनाने पर बल दिया।

Divya Himachal -7th August 2021

Punjab Kesari -7th August 2021

कृषि वैज्ञानिकों ने किया खेतों का दौरा

पाल अत्रि, चौधरी सरवण कुमार कृषि वि श व वि द्या ल य पालमपुर से वैज्ञानिकों टीम जिसमें की प्राकृतिक एवं जैविक खेती के विभागाध्यक्ष जनार्धन सिंह डॉ. कृषि वैज्ञानिक डॉ रामेश्वर, डॉ राकेश व राज कुमार ने विकास

खंड भेडू महादेव के गांव गुजरेड़ा में अमर सिंह के खेतों का भ्रमण किया। प्राकृतिक खेती की विधि से बिजी गई मक्की की फसल और सह फसल के रूप में बोई गई सोयाबीन की फसल का निरीक्षण किया। डॉ जनार्दन सिंह ने खेतों के भीतर जाकर किसानों को प्राकृतिक खेती के सिद्धांतों की विस्तार से चर्चा की और बताया कि आप स्वयं प्राकृतिक खेती की विधि से तैयार मक्की और रसायनिक विधि से बोई गई मक्की मे फर्क देख सकते हैं इन्होंने प्राकृतिक खेती से संबंधित काफी सुझाव दिए। इस मौके पर डॉ. शशि पाल अत्री, उप परियोजना निदेशक डॉ. अरुण वयास और डॉ अमित शर्म मे भी अपने विचार रखे। आतमा परियोजना से डॉ. शीतल सुद और रोनित धीमान भी मौजूद रहे। संवाद

नांज-कैलोधार में कृषि विश्वविद्यालय पालमपुर के सौजन्य से लगाए जागरूकता शिविर

कार्यालय संवाददाता— करसोग

विधानसभा करसोग का किसान फसलों की प्राकृतिक खेती के माध्यम और उसकी विधि अनुसार ही बिजाई करे, ताकि ज्यादा से ज्यादा लाभ प्राप्त किया जा सके। इसी उद्देश्य को लेकर चौधरी इसा उद्दर्थ को लकर चावरा सरवन कुमार कृषि विश्वविद्यालय पालमपुर से जैविक कृषि एवं प्राकृतिक खेती विभाग में जायका द्वारा संचालित परियोजना 'क्षमतावान फसलों पर 'क्षमतावान फसला पर जागरूकता' कार्यक्रमों के अंतर्गत दो प्रशिक्षण शिविर लगाए गए। शिविर में कृषि विभाग से जुड़े विशेषज्ञ डा. गोपाल कतना तथा डा. राजकुमार द्वारा सभी किसानों को जागरूक

मौके किया गया। इस पर करसोग कृषि विभाग मे एसएमएस मीना तथा डा. बागबानी विभाग से उद्यान विकास अधिकारी डाक्टर चमेली नेगी ने भी भाग लेते हुए शिविर को सफल बनाने में पूरा सहयोग किया। संबंधित विभागों की ओर से किसानों तथा बागबानों को जो

Amar Ujala- 24th December 2021

डेढ़ सौ किसानों द्वारा भाग लिया गया, जिन्हें उपरोक्त महत्त्वपूर्ण विषयों पर कृषि विश्वविद्यालय के वैज्ञानिक डा. गोपाल खतना द्वारा क्षमतावान फसलें जैसे की चलाई मरेश एवं बथुआ की खेती, इनके लाभ तथा इनकी विशेषताओं के बारे में विस्तारपूर्वक जानकारी दी गई। इस दौरान किसानों से गशः इस दारान किसाना स आग्रह किया गया कि वह इन फसलों की प्राकृतिक खेती के माध्यम से इसकी विधि अनुसार बिजाई करें। कृषि विभाग की ओर से डा. मीना तथा उद्यान विकृत्स, अधिकार्य, डा. चम्रैली नेगी ने दोनों कार्यक्रमों के दौरान क्षमतावान फसलों की उपयोगित एवं उनकी उपलब्धियों के बारे में

विस्तार पूर्वक जानकारी रखें।

130 किसानों ने जानी प्राकृतिक खेती

प्राकृतिक खेती भुंतर। जिला कुल्लू की गइसा में रूंज चाटी के किस्तानों के लिए दो दिवसीय प्राकृतिक खेती प्रशिक्षण शिविर का आयोजन किया गया। कृषि विश्वविद्यालय के जायका विभाग दारा आयोजित इस कार्यक्रम में किसानों को प्राकृतिक खेती को अपनाने और इसके फायदी के बारे में बताया गया। कृषि विवि के ज्ञ. गोपाल कताना तथा राजकुमार द्वारा सभी किसानों को प्राकृतिक खेती करने के बारे में जागरूक किया और किसानों को वैज्ञानिक व उन्नत तकनीक पर जोर देने का आग्रह किया। उन्होंने कहा कि प्राकृतिक खेती से किसान अपनी फसलों पर लुगान, को कुई गुना कम कर सकते लागत को कई गुना कम कर सकते हैं और अपनी आमदानी का बढ़ा र जार जापना जागवाना का बढ़ा सकते हैं। इसके अलावा खेतों को भी बवाया जा सकता है। इस कार्यक्रम में कुल्लू के लगभग 130 किसानों ने भाग लिया।

Amar Ujala- 30th March 2022

पालमपुरः पौधारोपण अभियान के दौरान सामूहिक चित्र में विद्यार्थी।

वह प्रदान की गई। इस दौरान

बताया गया कि क्षमतावान

जैविक कृषि एवं प्राकृतिक खेती के बैनर तले पहला शिविर नांज

क्षेत्र में ममला गांव लगाया गया

जबकि दूसरा शिविर कैलोधार में

हुआ। इन दोनों शिविरों में करीब

जागरुकता तथा

फसलों पर

ष विश्वविद्यालय पालमपुर में रोपे पौधे

पालमपुर, 22 जुलाई (ब्यूरो): विकासार्थ विद्यार्थी कृषि विश्वविद्यालय पालमपुर द्वारा कृषि विश्वविद्यालय के जीरो बजट प्राकृतिक खेती फार्म में पौधारोपण महाअभियान का आयोजन किया गया जिसमें कृषि विश्वविद्यालय के विद्यार्थियों, शिक्षकों, गैर शिक्षकों

व अतिथियों द्वारा विभिन्न प्रकार के पौधे रोपे गए। कार्यक्रम में मुख्य अतिथि मनदीप शर्मा अधिष्ठाता पशु चिकित्सा और पशु विज्ञान महाविद्यालय कृषि विश्वविद्यालय पालमपुर रहे।

कार्यक्रम की अध्यक्षता जनार्धन सिंह विभागाध्यक्ष जैविक कृषि एवं

प्राकृतिक खेती विभाग कृषि विश्वविद्यालय पालमपुर द्वारा को गई और विशिष्ट अतिथि प्रदीप कुमार ए.बी.वी.पी. राष्ट्रीय उपाध्यक्ष रहे। जिला संयोजक अभय वर्मा ने बताया कि विकासार्थ विद्यार्थी द्वारा पूरे देश भर में 1 करोड़ पौधे

लगाने का लक्ष्य रखा गया है।

Punjab Kesari- 22nd July 2022