HERBAL BIODIVERSITY AND BIORESOURCES OF HIMACHAL PRADESH

R.D. Singh, S.K. Uniyal, Amit Kumar, Brij Lal and P.S. Ahuja Institute of Himalayan Bioresource Technology Palampur, P.B. # 6, Himachal Pradesh 176 061

Biodiversity forms the basis for a healthy environment and source of economic and food security for future generations. Every organism and its variation are unique and have its own role to play in a particular ecological niche. At least 40% of the world's economy and 80% of the need of the poor are dependent upon biological material. Traditional systems of medicine, which serve as a cure for about 75 to 80% of the world's population, are based upon herbal biodiversity and natural products.

Himachal Pradesh is one of the largest states of the Indian Himalayan region. It is located between 28[°] to 33[°] N and 75[°] to 79[°] E. The state encompasses extraordinary vegetation communities and floral assemblages, which could be attributed to wide altitudinal gradient coupled with local variations, such as heavy rainfall in the southern parts of the state and arid conditions in northern part of the state.

Out of the total 55,576.3 sq km area of the state approximately 14,353 sq km is under forest cover, which amounts to about 25% of the total area. It is higher than the average estimates for the country (20.64%). However, when compared to Himalayan states the forest cover in Himachal Pradesh is very low. In the north-east, as high as 87% forest cover has been reported, even the adjoining state of Uttaranchal has more than 45% forest cover.

Of the 12 district of HP, maximum forest cover is reported from Sirmaur (48%) and lowest from Lahaul and Spiti (1.3%). The state contributes 2.12% to the total forest cover of the country (FSI, 2003). The distribution of these forests has recently been mapped using remote sensing and GIS (Chandrasekhar *et al.*, 2003). A total of 20 different vegetation types have been identified in the state (Table 1).

Based on the available information, the flora of HP consists of about 180 families comprising about 1038 genera and about 3400 species (Chowdhery and Wadhwa, 1984, Chowdhery, 1999). Asteraceae with more than 328 species is the largest family followed by Poaceae and Fabaceae. *Carex* is the most dominant genera (48 species) followed by *Polygonum* (37 species) and *Poa* (33 species). These rich forests and diversity of bioresources available in the state support the livelihood of the inhabitants.

Table 1.	Vegetation	communities,	their area	and diversity
	rogotation	oo mmanitioo,	then alou	and arronoity

Land use types	Area	Per cent of total	Diversity H'
Alpine meadow	5346.21	9.60	5.41
Alpine scrub	2086.92	3.80	6.55
Betula/Rhododendron	455.09	0.80	4.34
Chilgoza	76.98	0.10	0.40
Chir pine	2005.52	3.60	5.35
Blue pine	2193.60	3.90	4.02
Deodar	2153.35	3.90	7.64
Dry deciduous	26.78	0.10	7.13
Ephedra	81.97	0.20	0.80
Hippophae	258.43	0.50	1.72
Juniper	208.41	0.40	0.73
Mixed conifer	3226.72	5.80	8.15
Moist deciduous	1573.62	2.80	6.84
Oak	879.38	1.60	5.78
Riverine	24.66	0.04	2.17
Sal	306.97	0.55	2.07
Scrub	2152.55	3.87	1.56
Temperate broadleaved	408.83	0.73	7.52
Temperate grassland	2154.36	3.87	4.32
Temperate scrub	321.64	0.58	7.25
Non forest	29731.40	53.36	NA
Total	55673.39	100.00	NA

Source: Chandrasekhar et al., 2003

Table 2. Quantity of some herbs extracted from Himachal during 1995-2000

Species	Quantity (t)
Aconitum heterophyllum	43.6
Angelica glauca	73.3
Berberis spp.	797.1
Betula utilis	56.2
Centella asiatica	170.8
Ephedra gerardiana	74.7
Picrorhiza kurrooa	108.3
Podophyllum hexandrum	37.3
Selinum tenuifolium	30.2
Valeriana spp.	645.2

Nearly 61 lakh people reside in the state of HP (Nandy and Rao, 2001), majority of whom are rural (92%) (Holden and Sankhayan, 1998) and practice farming. The interior areas of the state are devoid of modern medical facilities, and hence dependency on medicinal plants is very high. As many as 500 different plants are used by the local people for curing various ailments (Chauhan, 2003).

The state contributes heavily to the trade in medicinal plants and nearly 130 species are in heavy demand (Badola and Pal, 2003). During the year 1999-2000 a total of about 1402 t of different medicinal plants and other forest produce worth Rs. 705.79 lakhs were traded (Anon., 2002). This is what has been officially documented and allowed. However, majority of the trade in medicinal plant is illegal for which information is not available.

In addition to agriculture, people in the state rear livestock. The fodder requirements of the livestock are met primarily from the surrounding forests. It has been estimated that in the Himalaya majority of the fodder is extracted from forests and only 37% is derived from agricultural system, pastures and degraded lands (Singh *et al.*, 1998). Plants not only fulfill the fodder requirements but are also used for curing various livestock diseases.

As domestication of plants and animals was the first endeavour of human being on earth, the domesticated animals have been subjected to various sufferings. With passage of time the struggle for existence taught many lessons to mankind vis-à-vis natural phenomena. Consequently, through age long trial and error, the primitive men developed various skills including treatment of their domestic animals by plants found in vicinity.

Traditional uses of medicinal plants have been continuing since Vedic period and still a large population is dependent on herbal medicines. About 152 plants have been documented in India for traditional veterinary medicines (Table 3, Srivastava *et al.*, 2000). However, owing to urbanization, the people have abandoned the idea of traditional use of plants in their day-to-day life and majority of such plants are becoming scarce owing to unplanned exploitation and prevailing biotic factors. The knowledge of taxa and their uses against particular ailment of livestock is getting limited to remote and far flung areas.

Acacia catechu	Acacia nilotica	Achillea millefolium	Aconitum ferox
Acorus calamus	Aegle marmelos	Albizia procera	Allium cepa
Allium sativum	Aloe barbadensis	Alpinia galanga	Alstonia scholaris
Andrographis paniculata	Annona squamosa	Apium graveolens	Asparagus racemosus
Atropa belladonna	Azadirachta indica	Baliospermum montanum	Bambusa arundinacea
Bambusa arundinacea	Bauhinia variegata	Berberis asiatica	Boerhaavia diffusa
Bombax ceiba	Bryonopsis laciniosa	Buchanania lanzan	Butea monosperma
Calotropis gigantea	Cannabis sativa	Capparis sepiaria	Carissa congesta
Cassia fistula	Cassia occidentalis	Cassia senna	Cassia tora

 Table 3. Plant used for traditional veterinary medicines

Centella asiatica	Cinnamomum camphora	Cinnamomum verum	Cissampelos pareira
Cissus quadrangularis	Citrullus colocynthis	Citrus aurantifolia	Claviceps purpurea
Cleome viscosa	Clerodendrum phlomidis	Coriandrum sativum	Crataeva magna
Croton tiglium	Cuminum cyminum	Curcuma amada	Curcuma domestica
Cynodon dactylon	Cyperus rotundus	Dalbergia sissoo	Datura stramonium
Digitalis purpurea	Eclipta prostrata	Elettaria	Embelia ribes
		cardamomum	
Emblica officinalis	Ephedra gerardiana	Erythroxylum coca	Eulophia campestris
Euphorbia antiquorum	Exogonium purga	Ferula assafoetida	Ficus racemosa
Foeniculum vulgare	Gardenia gummifera	Gloriosa superba	Glycyrrhiza glabra
Gmelina arborea	Gossypium arboretum	Hedyotis corymbosa	Helianthus annus
Heliotropium indicum	Helicteres isora	Hemidesmus indicus	Hibiscus rosa-sinensis
Holarrhena	Hyoscyamus niger	Illicium verum	Juniperus communis
antidysenterica			
Kalanchoe integra	Lepidium sativum	Leucas cephalotes	Linum usitatissimum
Madhuca indica	Mallotus philippensis	Mangifera indica	Maytenus
			senegalensis
Mentha piperita	Mimosa pudica	Myrica esculenta	Myristica fragrans
Nicotiana tabacum	Nigella sativa	Ocimum basilicum	Ocimum tenuiflorum
Oroxylum indicum	Papaver somniferum	Phyllanthus amarus	Picrorhiza kurrooa
Pimpinella anisum	Piper cubeba	Piper longum	Piper nigrum
Plumbago zeylanica	Podophyllum hexandrum	Pongamia pinnata	Premna obtusifolia
Punica granatum	Quercus infectoria	Rheum emodi	Ricinus communis
Santalum album	Saraca asoca	Semicarpus	Sesamum orientale
		anacardium	
Solanum nigrum	Solanum surattense	Soymida febrifuga	Stereospermum
			chelonoides
Strychnos nux-vomica	Swertia chirayita	Symplocos racemosa	Syzygium aromaticum
Syzygium cumini	Tamarix troupii	Tectona grandis	Tephrosia purpurea
Terminalia arjuna	Terminalia bellirica	Terminalia chebula	Thymus vulgaris
Tinospora cordifolia	Trachyspermum amni	Trachyspermum	Tribulus terrestris
		roxburghiannum	
Trichosanthes	Trigonella foenum-	Triumfetta	Uraria lagopodioides
cucumerina	graecum	rhomboidea	
Urginea indica	Valeriana jatamansi	Vigna aconitifolia	Vitex negundo
Withania somnifera	Woodfordia fructicosa	Zingiber officinale	Zizyphus mauritianan

Source: Srivastava et al., 2000, CIMAP

In Himachal Pradesh, many workers have conducted Ethnobotanical surveys to record knowledge of treating different ailments of domestic animals by natives of different regions of the state (Table 4).

Table 4.	Plants used for traditional	veterinary medicines	by natives of	Himachal Pradesh
----------	-----------------------------	----------------------	---------------	------------------

	Ailment	Remedial plant	Plant part used	Reference
1.	Boils	Thalictrum foliolosum	Root	Sharma <i>et al.</i> , 2005
2.	Conjunctivitis	Pyrus pashia	Cell -sap	Kanwar & Yadav, 2005
3.	Diarrhoea	Cissampelos pariera and	Leaves	Kanwar & Yadav, 2005
		Buddleja crispa		
4.	Diarrhoea	Leucas lanata	Leaf infusion	Sharma <i>et al.</i> , 2005
5.	Fever	Zanthoxylum armatum	Seeds / leaves	Kanwar & Yadav, 2005
6.	Food	Hedychium spicatum	Rhizome & flowers	Brij <i>et al.</i> , 1996
	poisoning			
7.	Foot & Mouth	Tamarindus indica	Fruits	Kanwar & Yadav, 2005
8.	Foot & Mouth	Thalictrum foliolosum	Whole plant	Sharma <i>et al.</i> , 2005
9.	Foot & Mouth	Thalictrum foliolosum	Roots	Brij <i>et al.</i> , 1996
10.	Foot & Mouth	Valeriana jatamansi	Roots	Kanwar & Yadav, 2005
11.	Foot & Mouth	Thalictrum foliolosum	Whole plant	Sharma <i>et al.</i> , 2005
12.	Giddiness	Heracleum candicans	Shoot powder	Sharma <i>et al.</i> , 2005
13.	Lice in sheep	Codonopsis clematidea	Extract of foliage &	Singh & Chauhan, 2005
			flowers	
14.	Low milk	Asparagus filicinus	Roots	Sharma <i>et al.</i> , 2005
	production			
15.	Rheumatic	Betula utilis	Ash of stem bark	Sharma <i>et al.</i> , 2005
	pain / deep			
	cut			
16.	Stomachache	Fraxinus xanthoxyloides	Extract of bark	Singh & Chauhan, 2005
17.	Stubborn	Leucas lanata	Leaves	Sharma <i>et al.</i> , 2005
	placenta			
18.	Swelling due	Lantana camara	Roots' paste	Brij <i>et al.</i> , 1996
	to food			
	poisoning in			
	goats			
19.	Ulcers/	Delphinium vestitum	Root powder	Sharma <i>et al.</i> , 2005
	wounds			

Owing to urbanization, tourism, natural calamities, and over-exploitation of plant-resources, some of these plants are already endangered (Pal and Jain, 1998) and some more may be

threatened in times to come. The most affected area is the Himalaya - the abode of many valuable plants like *Taxus baccata*, *Picrorhiza kurrooa*, *Podophyllum hexandrum*, *Saussurea lappa*, *Coptis teeta*, *Swertia* spp. etc. Concomitantly, our demand for herbs and herbal products is increasing with growing population and awareness regarding herbal therapies. Thus, sustainable use of these plant-resources through *in-situ* and/or *ex-situ* conservation becomes imperative. The present wave of awareness around environment and natural products is an opportunity for planned sustainable utilization of our valuable forest and cultivable bioresources in the Indian Himalayan zone.

References

Anonymous. 2002. HP Forest Statistics, State Forest Department, Himachal Pradesh.

- Badola, H.K. and Pal, M. 2003. Threatened medicinal plants and their conservation in Himachal Himalayas. *Indian Forester* 129(1): 55-68.
- Brij Lal, Vats, S.K., Singh, R.D. and Gupta, A.K. 1996. Plants used as Ethnomedicine and supplementary food by *Gaddis* of Himachal Pradesh, India. *In:* Jain, S.K. (ed) Ethnobiology in Human Welfare, Deep Publications, New Delhi, pp 384-387.
- Chandrasekhar, M.B., Singh, S. and Roy, P.S. 2003. Geospatial modeling techniques for rapid assessment of phytodiversity at landscape level in western Himalayas, Himachal Pradesh. *Current Science* 84(5): 663-670.
- Chauhan, N.S. 2003. Important medicinal and aromatic plants of Himachal Pradesh. *Indian Forester* 129(8): 979-998.
- Chowdhery, H.J and Wadhwa, B.M. 1984. Flora of Himachal Pradesh Vol 1 and 2. Botanical Survey of India, Calcutta.
- Chowdhery, H.J. 1999. Himachal Pradesh. *In*: Mudgal, V. and Hajra, P.K. (eds) Floristic Diversity and Conservation Strategies in India. Vol II. Dehradun, pp 845-887.
- FSI. 2003. State of Forest Report, Forest Survey of India, Dehradun
- Holden, ST and Sankhayan, P.L. 1998. Population pressure, agricultural change and environmental degradation in the western Himalayan region of India. *Forum for Development Studies* 2: 271-300.
- Kanwar, Promila and Yadav, Dinesh. 2005. Indigenous animal healthcare practices of Kangra district, Himachal Pradesh. *Indian Journal of Traditional Knowledge* 4(2): 164-168.
- Nandy, S.N. and Rao, K.S. 2001. Census 2001: Population dynamics of Indian Himalaya. *Himalayan Ecology & Development* 9(2):1-6.
- Pal, D.C. and Jain, S.K. 1998. Tribal Medicine. Naya Prokash, Calcutta, pp 1-34.
- Sharma, P.K., Chauhan, N.S. and Brij Lal. 2005. Studies on plant associated indigenous knowledge among the *Malanis* of Kullu district, Himachal Pradesh. *Indian Journal of Traditional Knowledge* 4(4): 403-408.
- Singh, J.S., Singh, S.P. and Jeet Ram. 1998. Fodder and Fuelwood Resources of Central Himalaya: Problems and Solutions. Report Submitted for Study Group on Fuel and Fodder, Planning Commission, Government of India, New Delhi.

- Singh, Virendra and Chauhan, N.S. 2005. Traditional practices of herbal medicines in the Lahaul valleys, Himachal Himalayas. *Indian Journal of Traditional Knowledge* 4(2): 208-220.
- Srivastava, G.N., Hasan, S.A., Bagchi, G.D. and Kumar, Sushil. 2000. Indian Traditional Veterinary Medicinal Plants, Central Institute of Medicinal and Aromatic Plants, Lucknow, p 581.

જાજીલ્ય